Дробление зиготы заканчивается образованием. Общая характеристика эмбрионального развития. Эмбрион из маточной трубы попадает в полость матки

Эмбриональное развитие -это сложный и длительный морфогенетический процесс, в ходе которого из отцовской и материнской половых клеток формируется новый многоклеточный организм, способный к самостоятельной жизнедеятельности в условиях внешней среды. Лежит в основе полового размножения и обеспечивает передачу наследственных признаков от родителей потомкам.

Оплодотворение,заключается в соединении спермотозоида с яйцом.Важнейшими этапами процесса оплодотворения является:

1)проникновение СП в яйцо;

2)активация в яйце разнообразных синтетических процессов;

3)слияние ядер яйца и СП с восстановлением диплоидного набора хромосом.

Для того,чтобы оплодотворен произошло, необходимо сближение женских и мужских половых клеток. Оно достигается благодаря осеменению.

Проникновению СП в яйцо способствует фермент гиалуронидиаза и другие биологические активн.вещества (спермолизин),которые повышают проницаемость основного межклеточного вещества.Ферменты выделяют акросомой в процессе акросомной реакции. Сущность ее заключается в следующем,в момент контакта с яйцеклеткой на вершине головки спермия плазматическая мембрана и прилежащая к ней мембрана растворяется, и происходит растворение прилежащего участка яйцевой оболочки.Акросомная мембрана выпячивается наружу и образует вырост в виде полой трубки.В области такого контакта возникает выпячивание или бугорок оплодотворения.ювслед за чем плазмат.мембраны обеих гамет сливаются и начинается объединение их содержимого.С этого момента СП и Я представляет собой единую клетку-зиготу.

Активация Я или кортикальная реакция ,развивающаяся в результате контакта со СП,имеет морфологические и биохимические проявления. Проявлением активации служат изменения поверхностного кортикального слоя ооплазмы и образование оболочки оплодотворения. Оболочка оплодотворения защищает яцйо от проникновения сверчисленных спермиев.

Зигота - диплоидная (содержащая полный двойной набор хромосом) клетка, образующаяся в результате оплодотворения (слияния яйцеклетки и сперматозоида). Зигота является тотипотентной (то есть, способной породить любую другую) клеткой.

У человека первое митотическое деление зиготы происходит спустя приблизительно 30 часов после оплодотворения, что обусловлено сложными процессами подготовки к первому делению дробления .

Дробление - это ряд последовательных митотических делений зиготы и заканчивающихся образованием многоклеточного зародыша - бластулы. Первое деление дробления начинается после объединения наследственного материала пронуклеусов и образования общей метафазной пластинки. Возникающие при дроблении клетки называют бластомерами (от греч. бласте- росток, зачаток). Особенностью митотических делений дробления является то, что с каждым делением клетки становятся все мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объемов ядра и цитоплазмы.Сначала бластомеры прилегают друг к другу, образуя скопление клеток, называемое морулой . Затем между клетками образуется полость - бластоцель , заполненная жидкостью. Клетки оттесняются к периферии, образуя стенку бластулы - бластодерму. Общий размер зародыша к концу дробления на стадии бластулы не превышает размера зиготы.


Прогенез – гаметогенез (спермато– и овогенез) и оплодотворение.Сперматогенез осуществляется в извитых канальцах семенников и подразделяется на четыре периода: 1) период размножения – I; 2) период роста – II; 3) период созревания – III; 4) период формирования – IV. Овогенез осуществляется в яичниках и подразделяется на три периода:1) период размножения (в эмбриогенезе и в течение 1-го года постэмбрионального развития); 2) период роста (малого и большого); 3) период созревания.Яйцеклетка состоит из ядра с гаплоидным набором хромосом и выраженной цитоплазмы, в которой содержатся все органеллы, за исключением цитоцентра.

Дробление. Характеристика дробления. Основные типы яйцеклеток по расположению желтка. Связь строения яйцеклетки с типом дробления. Бластомеры и эмбриональные клетки. Строение и типы бластул.

Дробление - В основе этого процесса лежит митотическое деление клеток. Однако образующиеся в результате деления дочерние клетки не расходятся, а остаются тесно прилегающими друг к другу. В процессе дробления дочерние клетки прогрессивно уменьшаются. Каждому животному свойствен определенный тип дробления, обусловленный количеством и характером распределения желтка в яйцеклетке. Желток тормозит дробление , поэтому часть зиготы, перегруженная желтком, дробится медленнее или не дробится вовсе.

В изолецитальном , бедном желтком оплодотворенном яйце ланцетника, первая борозда дробления в виде щели начинается на анимальном полюсе и постепенно распространяется в продольном меридиональном направлении к вегетативному, разделяя яйцо на 2 клетки - 2 бластомера . Вторая борозда проходит перпендикулярно первой - образуются 4 бластомера. В результате ряда последовательных дроблений формируются группы клеток, тесно прилегающих друг к другу. У некоторых животных такой зародыш напоминает ягоду шелковицы или малины. Он получил название морулы (лат. morum - тутовая ягода) – многоклеточного шара без полости внутри.

В телолецитальных яйцах , перегруженных желтком - дробление может быть полным равномерным или неравномерным и неполным. Бластомеры вегетативного полюса из-за обилия инертного желтка всегда отстают в темпе дробления от бластомеров анимального полюса. Полное, но неравномерное дробление характерно для яиц амфибий . У рыб, птиц и некоторых других животных дробится лишь часть яйца, расположенная на анимальном полюсе; происходит неполное дискоидальное дробление. В процессе дробления увеличивается число бластомеров, однако бластомеры не вырастают до размеров исходной клетки, а с каждым дроблением становятся мельче. Это объясняется тем, что митотические циклы дробящейся зиготы не имеют типичной интерфазы; пресинтетический период (G1) отсутствует, а синтетический (S) начинается еще в телофазе предшествующего митоза.

Дробление яйца заканчивается образованием бластулы.

В полилецитальных яйцеклетках костистых рыб, пресмыкающихся, птиц, а также однопроходных млекопитающих дробление частичное, или мероб-ластическое, т.е. охватывает только свободную от желтка цитоплазму. Она располагается в виде тонкого диска на анимальном полюсе, поэтому такой тип дробления называют дискоидальным . При характеристике типа дробления учитывают также взаимное расположение и скорость деления бластомеров. Если бластомеры располагаются рядами друг над другом по радиусам, дробление называют радиальным .

Дробление может быть: детерминированным и регулятивным; полным (голобластическим) или неполным (меробластическим); равномерным (бластомеры более-менее одинаковы по величине) и неравномерным (бластомеры не одинаковы по величине, выделяются две - три размерные группы, обычно называемые макро- и микромерами)

Типы яйцеклеток:

Количество желтка- Олиголецетальные (ланцетник) Мезолецетальные (амфибии) Полилецетальные (рыбы, птицы)

Месторасположение- Изолецетальные (расположен диффузно, равномерно) . Содержат немного желтка, равномерно расположенного по всей клетке. Характерны для иглокожих, низших хордовый и млекопитающих. У млекопитающих - это аллециатльные яйцеклетки (желтка практически нет)

Телолецетальные (с умеренным количествам желтка на нижнем вегетативном полюсе)

Резко телолецетальные (с большим количествам желтка, занимает всю яйцеклетку, кроме верхнего полюса. Желтка много, сконцентрирован на вегетативном полюсе. Выделяют 2 группы: умеренно телолецитальные (молюски, земноводные) и резколецитальные (рептили и птицы). На анамальном полюсе сосредоточены цитоплазма и ядро.

Центролецетальные (желтка немного, но плотно в центре). Желтка немного, расположен в центре. Характерно для членистоногих

Бластомеры- клетки, образующиеся в результате делений дробления яйца у многоклеточных животных. Характерная особенность Б.- отсутствие роста в период между делениями, вследствие чего при очередном делении объём каждого Б. уменьшается вдвое. При голобластич. дроблении в телолецитальных яйцах Б. различаются по размерам: крупные Б.- макромеры, средние - мезомеры, мелкие - микромеры. Во время синхронных делений дробления Б., как правило, однородны по форме, структура их цитоплазмы очень проста. Затем поверхностные Б. уплощаются, и яйцо переходит к заключит, фазе дробления - бластуляции.

Строение бластулы. Если образуется сплошной шар без полости внутри, то такой зародыш называют морулой . Образование бластулы или морулы зависит от свойств цитоплазмы. Бластула образуется при достаточной вязкости цитоплазмы, морула – при слабой вязкости. При достаточной вязкости цитоплазмы бластомеры сохраняют округлую форму и только в местах соприкосновения слегка сплющиваются. Вследствие этого между ними появляется щель, которая по мере дробления увеличивается, заполняется жидкостью и превращается в бластоцель. При слабой вязкости цитоплазмы бластомеры не округляются и располагаются тесно друг возле друга, щели нет и полость не образуется. Бластулы различны по своему строению и зависят от типа дробления.


Начало новому организму даёт оплодотворённая яйцеклетка (исключение составляют случаи партеногенеза и вегетативного размножения). Оплодотворение представляет собой процесс слияния двух половых клеток (гамет) друг с другом, в ходе которого осуществляются две разные функции: половая (комбинирование генов двух родительских особей) и репродуктивная (возникновение нового организма). Первая из этих функций включает передачу генов от родителей потомкам, вторая - инициацию в цитоплазме яйцеклетки тех реакций и перемещений, которые позволяют продолжить развитие. В результате оплодотворения в яйцеклетке восстанавливается двойной (2п) набор хромосом. Центросома, внесённая спермием, после удвоения образует веретено деления, и зигота вступает в 1-ю стадию эмбриогенеза - стадию дробления. В результате митоза из зиготы образуются 2 дочерние клетки - бластомеры.

Предзиготный период

Предзиготный период развития связан с образованием гамет (гаметогенез). Образование яйцеклеток начинается у женщин еще до их рождения и завершается для каждой данной яйцеклетки только после ее оплодотворения. К моменту рождения плод женского пола в яичниках содержит около двух миллионов ооцитов первого порядка (это еще диплоидные клетки), и только 350 - 450 из них достигнут стадии ооцитов второго порядка (гаплоидные клетки), превращаясь в яйцеклетки (по одной в течение одного менструального цикла). В отличие от женщин половые клетки в семенниках (яичках) у мужчин начинают образовываться только с началом периода полового созревания. Длительность периода образования сперматозоида составляет примерно 70 суток; на один грамм веса яичка количество сперматозоидов составляет около 100 миллионов в сутки.


Оплодотворение

Оплодотворение - слияние мужской половой клетки (сперматозоида) с женской (яйцом, яйцеклеткой), приводящее к образованию зиготы - нового одноклеточного организма. Биологический смысл оплодотворения состоит в объединении ядерного материала мужской и женской гамет, что приводит к объединению отцовских и материнских генов, восстановлению диплоидного набора хромосом, а также активации яйцеклетки, то есть стимуляции её к зародышевому развитию. Соединение яйцеклетки со сперматозоидом обычно происходит в воронкообразно расширенной части маточной трубы в течение первых 12 часов после овуляции.

Семенная жидкость, попадая во влагалище женщины при половом сношении, обычно содержит от 60 до 150 млн. сперматозоидов, которые, благодаря движениям со скоростью 2-3 мм в минуту, постоянным волнообразным сокращениям матки и труб и щелочной среде, уже спустя 1-2 минуты после полового акта достигают матки, а через 2-3 часа - концевых отделов маточных труб, где обычно и происходит слияние с яйцеклеткой. Различают моноспермное (в яйцеклетку проникает один сперматозоид) и полиспермное (в яйцеклетку проникают два и более сперматозоидов, но с ядром яйцеклетки сливается только одно ядро сперматозоида) оплодотворение. Сохранению активности спермиев во время прохождения их в половых путях женщины способствует слабощелочная среда шеечного канала матки, заполненного слизистой пробкой. Во время оргазма при половом акте слизистая пробка из шеечного канала частично выталкивается, а затем вновь втягивается в него и тем самым способствует более быстрому попаданию сперматозоидов из влагалища (где в норме у здоровой женщины среда слабокислая) в более благоприятную среду шейки и полости матки. Прохождению сперматозоидов через слизистую пробку шеечного канала способствует и резко повышающаяся в дни овуляции проницаемость слизи. В остальные дни менструального цикла слизистая пробка имеет значительно меньшую проницаемость для сперматозоидов.

Многие сперматозоиды, находящиеся в половых путях женщины, могут сохранять способность к оплодотворению 48-72 часа (иногда даже до 4-5 суток). Овулировавшая яйцеклетка сохраняет жизнеспособность примерно 24 часа. Учитывая это, наиболее благоприятным временем для оплодотворения считается период разрыва созревшего фолликула с последующим рождением яйцеклетки, а также 2-3-й день после овуляции. Женщинам, применяющим физиологический метод контрацепции, следует помнить о том, что сроки овуляции могут колебаться, а жизнеспособность яйцеклетки и сперматозоидов может быть значительно больше. Вскоре после оплодотворения начинается дробление зиготы и образование зародыша.

Зигота

Зигота (греч. zygote соединенная в пару) - диплоидная (содержащая полный двойной набор хромосом) клетка, образующаяся в результате оплодотворения (слияния яйцеклетки и сперматозоида). Зигота является тотипотентной (то есть, способной породить любую другую) клеткой. Термин ввёл немецкий ботаник Э. Страсбургер.

У человека первое митотическое деление зиготы происходит спустя примерно 30 часов после оплодотворения, что обусловлено сложными процессами подготовки к первому акту дробления. Клетки, образовавшиеся в результате дробления зиготы называют бластомерами. Первые деления зиготы называют "дроблениями" потому, что клетка именно дробится: дочерние клетки после каждого деления становятся всё мельче, а между делениями отсутствует стадия клеточного роста.

Развитие зиготы Зигота либо непосредственно после оплодотворения приступает к развитию, либо одевается плотной оболочкой и на некоторое время превращается в покоящуюся спору (часто называется зигоспорой) - характерно для многих грибов и водорослей.

Дробление

Период эмбрионального развития многоклеточного животного начинается с дробления зиготы и завершается рождением новой особи. Процесс дробления заключается в серии последовательных митотических делений зиготы. Образующиеся в результате нового деления зиготы две клетки и все последующие поколения клеток на этом этапе носят название бластомеров. В ходе дробления одно деление следует за другим, и не происходит роста образующихся бластомеров, вследствие чего каждое новое поколение бластомеров представлено более мелкими клетками. Эта особенность клеточных делений при развитии оплодотворенной яйцеклетки и определила появление образного термина - дробление зиготы.

У разных видов животных яйцеклетки различаются по количеству и характеру распределения в цитоплазме запасных питательных веществ (желтка). Это в значительной степени определяет характер последующего дробления зиготы. При небольшом количестве и равномерном распределении желтка в цитоплазме происходит деление всей массы зиготы с образованием одинаковых бластомеров - полное равномерное дробление (например, у млекопитающих). При скоплении желтка преимущественно у одного из полюсов зиготы происходит неравномерное дробление - образуются бластомеры, различающиеся по размерам: более крупные макромеры и микромеры (например, у амфибий). Если же яйцеклетка очень богата желтком, то дробится ее часть, свободная от желтка. Так, у пресмыкающихся, птиц дроблению подвергается лишь дисковидный участок зиготы у одного из полюсов, где располагается ядро - неполное, дискоидальное дробление. Наконец, у насекомых в процессе дробления задействован лишь поверхностный слой цитоплазмы зиготы - неполное, поверхностное дробление.

В результате дробления (когда число делящихся бластомеров достигает значительного числа) образуется бластула. В типичном случае (например, у ланцетника) бластула представляет собой полый шар, стенка которого образована одним слоем клеток (бластодерма). Полость бластулы - бластоцелъ, иначе называемая первичной полостью тела, заполнена жидкостью. У амфибий бластула имеет очень небольшую полость, а у некоторых животных (например, членистоногих) бластоцель может полностью отсутствовать.

Гаструляция

На следующем этапе эмбрионального периода происходит процесс формирования гаструлы - гаструляция. У многих животных образование гаструлы происходит путем инвагинации, т.е. выпячивания бластодермы на одном из полюсов бластулы (при интенсивном размножении клеток в этой зоне). В результате образуется двуслойный, чашеобразный зародыш. Наружный слой клеток - эктодерма, а внутренний - энтодерма. Внутренняя полость, возникающая при выпячивании стенки бластулы, первичная кишка, сообщается с внешней средой отверстием - первичным ртом (бластопором). Существуют и другие типы гаструляции. Например, у некоторых кишечнополостных энтодерма гаструлы образуется путем иммиграции, т.е. "выселения" части клеток бластодермы в полость бластулы и последующего их размножения. Первичный рот образуется путем разрыва стенки гаструлы. При неравномерном дроблении (у некоторых червей, моллюсков) гаструла образуется в результате обрастания макромеров микромерами и формирования за счет первых энтодермы. Нередко разные способы гаструляции сочетаются.

У всех животных (кроме губок и кишечнополостных - двуслойных животных) этап гаструляции завершается образованием еще одного слоя клеток - мезодермы. Этот "клеточный пласт формируется между энто - и эктодермой. Известно два способа закладки мезодермы. У кольчатых червей, например, в области бластопора гаструлы обособляются две крупные клетки (телобласты). Размножаясь, они дают начало двум мезодермальным полоскам, из которых (отчасти за счет расхождения клеток, отчасти в результате разрушения части клеток внутри мезодермальных полосок) образуются целомические мешки - телобластический способ закладки мезодермы. При энтероцельном способе (иглокожие, ланцетник, позвоночные) в результате выпячивания стенки первичной кишки образуются боковые карманы, которые затем отделяются и становятся целомичес-кими мешками. В обоих случаях закладки мезодермы целомические мешки разрастаются и заполняют первичную полость тела. Мезодермальный слой клеток, выстилающий изнутри полость тела, образует перитонеальный эпителий. Полость, заменившая таким образом первичную, называется вторичной полостью тела, или целомом. В случае телобластического способа закладки мезодермы бластопор превращается в ротовое отверстие взрослого животного. Такие организмы называются первичноротыми. У вторичноротых животных (при энтероцельном способе закладки мезодермы) бластопор зарастает или превращается в анальное отверстие, а рот взрослой особи возникает вторично, путем выпячивания эктодермы.

Образованием трех зародышевых листков (экто-, энто- и мезодермы) завершается этап гаструляции, и с этого момента начинаются процессы гисто - и органогенеза. В результате дифференцировки клеток трех зародышевых листков формируются различные ткани и органы развивающегося организма. Еще в конце прошлого века (во многом благодаря исследованиям И. И. Мечникова и А. О. Ковалевского) было установлено, что у разных видов животных одни и те же зародышевые листки дают одни и те же органы и ткани. Из эктодермы образуются эпидермис со всеми производными структурами и нервная система. За счет энтодермы формируется пищеварительный тракт и связанные с ним органы (печень, поджелудочная железа, легкие и т.п.). Мезодерма образует скелет, сосудистую систему, выделительный аппарат, гонады. Хотя сегодня зародышевые листки и не считаются строго специализированными, тем не менее их гомология у подавляющего большинства видов животных очевидна, что указывает на единство происхождения животного царства.

На протяжении эмбрионального периода происходит нарастание темпов роста и дифференцировки у развивающихся организмов. Если в процессе дробления роста не происходит и бластула (по своей массе) может существенно уступать зиготе, то, начиная с процесса гаструляции, масса зародыша стремительно увеличивается (вследствие интенсивного размножения клеток). Процессы клеточной дифференцировки начинаются на самом раннем этапе эмбриогенеза - дроблении и лежат в основе первичной тканевой дифференцировки - возникновения трех зародышевых листков (эмбриональных тканей). Дальнейшее развитие зародыша сопровождается все усиливающимся процессом дифференцировки тканей и органов. В результате эмбрионального периода развития формируется организм, способный к самостоятельному (более или менее) существованию во внешней среде. Происходит рождение новой особи либо в результате вылупления из яйца (у яйцекладущих животных), либо выхода из тела матери (у живородящих).

Гисто - и органогенез

Гисто - и органогенез зародыша осуществляются в результате размножения, миграции, дифференциации клеток, его составляющих, установление межклеточных контактов и гибели части клеток. 317-й по 20-е сутки продолжается пресомитний период с 20-го дня начинается сомитний период развития. На 20-е сутки эмбриогенеза путем образования туловищный складок (цефалокаудальних и боковых) осуществляется отделения собственно зародыша от внезародышевых органов, а также изменение его плоской формы на цилиндрическую. Одновременно дорсальные участка мезодермы зародыша делятся на отдельные сегменты, расположенные с обеих сторон хорды, - сомиты. На 21-е сутки в организме зародыша есть 2-3 пары сомиты. Сомиты начинают образовываться с III пары, I и II пары появляются несколько позже. Количество сомиты постепенно нарастает: на 23-е сутки развития насчитывается 10 пар сомиты, на 25-ю - 14 пар, на 27-м - 25 пар, в конце пятой недели количество сомиты в эмбрионе достигает 43-44 пар. На основе подсчета числа сомиты можно приблизительно определить сроки развития (сомитний возраст) эмбриона.

С внешней части каждого сомиты возникает дерматом, с внутренней - склеротом, со средней - миотом. Дерматом становится источником дермы кожи, склеротом - хрящевой и костной тканей, миотом - скелетных мышц спинной части зародыша. Вентральные участки мезодермы - спланхнотом - не сегментируются, а разделяются на висцеральный и париетальной листки, из которых развиваются серозные оболочки внутренних органов, мышечная ткань сердца и кора надпочечников. Из мезенхимы спланхнотома образуются кровеносные сосуды, клетки крови, соединительная и гладкая мышечная ткани зародыша. Участок мезодермы, связывающий сомиты с спланхнотомом, делится на сегментные ножки - нефрогонотом, которые служат источником развития почек и половых желез, а также парамезонефральних протоков. Из последних образуется эпителий матки и яйцевода.

В процессе дифференциации зародышевой эктодермы образуется нервная трубка, нервные гребни, плакоды, кожная эктодерма и прехордальной пластинки. Процесс формирования нервной трубки называется нейруляции. Он заключается в образовании щелевидной углубления на поверхности эктодермы; утолщенные края этого углубления (нервные валики) срастаются с образованием нервной трубки. С краниальной части нервной трубки формируются мозговые пузыри является зачатком головного мозга. С обеих сторон от нервной трубки (между последней и кожной эктодермой) отделяются группы клеток, из которых формируются нервные гребни. Клетки нервного гребня способны к миграции. Клетки, мигрирующие в направлении дерматома, дают начало пигментным клеткам - меланоцитам; клетки нервных гребней, которые мигрируют в направлении брюшной полости, дают начало симпатической и парасимпатической нервной узлам, мозговом веществе надпочечников. Из клеток нервных гребней, не мигрировали, образуются ганглиозные пластинки, из которых развиваются спинномозговые и периферийные вегетативные нервные ганглии. С плакод формируются ганглии головы и нервные клетки органа слуха и равновесия.



Дробление (сегментация) у отдельных представителей разряда позвоночных имеет в общем одинаковое течение; однако, как уже было упомянуто выше, оно находилось под влиянием факторов, которые во время филогенеза воздействовали на развитие в виде последствий влияния внутренней и внешней среды, в которой организмы проживали во время своего родового развития (ценогенетические факторы).

При наблюдении за изменениями , происходящими в яйцеклетках согласно филогенетическому развитию яиц отдельных представителей разряда позвоночных, можно заметить, что яйцевые клетки в значительной мере отличаются друг от друга по содержанию питательного и строительного вещества - желтка. Яйцевые клетки ланцетника (Amfioxus), организма, который в филогенетическом отношении считается наиболее низко организованным существом, но который уже обладает прочной спинной областью, относятся к числу олиголецитальных.

Однако, в соответствии с филогенетическим развитием , количество желтка в яйцеклетках позвоночных животных, являющихся филогенетически наиболее высоко организованными организмами, все более возрастает, достигая максимального количества в птичьих яйцеклетках, которые являются относительно очень крупными и полилецитальными. Под влиянием ценогенетических факторов (факторов, воздействующих из внешней среды и обусловливаемых изменением образа жизни, а следовательно, и развития) количество желтка в процессе филогенетического развития по направлению к человеку все более уменьшается, благодаря чему яйцеклетки человека и высших млекопитающих становятся снова (вторично) олиголецитальными.

Наличие вариабельного количества желтка оказывает, как уже было сказано выше, значительное влияние на процесс дробления яйцеклетки. Яйцевые клетки с малым содержанием желтка (олиголецитальные) дробятся полностью, то есть все вещество оплодотворенного яйца при дроблении делится на новые клетки, бластомеры (яйцеклетки голобластического вида). Наоборот, у яйцеклеток, содержащих желтка больше, или даже большое количество желтка (полилецитальных), борозды дробления непрерывно дробят только меньшую часть ооплазмы, расположенную на так называемом анимальном полюсе, где желточных гранул меньше (яйцеклетки меробластического вида).
В соответствии с этим у отдельных представителей разряда позвоночных различаются следующие типы дробления.

1. Полное дробление . К полному, тотальному дроблению относятся те случаи, когда в процессе дробящего деления делится вся оплодотворенная яйцевая клетка и борозды дробления распространяются по всей ее поверхности. По этому типу дробятся яйцевые клетки голобластического вида. В зависимости от содержания в ооплазме большего или меньшего количества желтка, а также в зависимости от его распределения в ооплазме, при дроблении возникают бластомеры либо сравнительно одинаковой величины (полное равномерное, эквальное, или адэквальное дробление), либо бластомеры различной величины, а именно более крупные в области с большим содержанием желтка и менее крупные в том месте, где желтка меньше (полное неравномерное, инэквальное дробление). Более крупные бластомеры называются макромерами, менее крупные - микромерами.

Полное эквальное, или адэквальное , дробление свойственно олиголецитальным, изолецитальным яйцеклеткам (ланцетник, высшие млекопитающие и человек); по полному инэквальному типу дробятся мезолецитальные яйцевые клетки анизолецитального и умеренно телолецитального вида (некоторые низшие рыбы и земноводные).

2. Частичное, парциальное, дробление . По частичному типу дробятся яйцевые клетки, содержащие значительное количество желтка (полилецитальные яйцеклетки), у которых из-за их больших размеров борозды дробления при клеточном делении проникают только в область анимального полюса, где находится клеточное ядро и где слой ооплазмы содержит меньше желточных гранул (высшие рыбы, пресмыкающиеся, птицы и некоторые низшие млекопитающие, яйцеродные).

При таком дроблении на анимальном полюсе сравнительно крупного яйца дробится только круглое поле (диск), в то время как остаток яйцевой клетки (желточный шар) остается не раздробленным (парциальное дисковидное дробление). У насекомых их полилецитальные центролецитальные яйцеклетки хотя и дробятся по всей поверхности, но центр клетки, содержащий большое количество желтка, остается не раздробленным (парциальное поверхностное дробление).

В приведенном рисунке показаны отдельные виды яйцевых клеток в зависимости от содержания и распределения желтка в ооплазме, а также в зависимости от соответствующего типа дробления.

Процесс, когда зигота преобразуется в многоклеточный организм, называется дроблением. Этот период является следующим после оплодотворения и включает в себя целый ряд многочисленных последовательных делений.

Процесс дробления зиготы занимает порядка шести дней. Все клетки, из которых состоит зародыш, в медицине называются бластомерами. Дробление зиготы характеризуется своими индивидуальными особенностями.

Интерфаза, как период, минимальна по своей длительности. Далее следуют два полноценных митоза, что и объясняет прогрессивное уменьшение зиготы. К концу шестых суток, после оплодотворения, сформировавшийся многоклеточный организм по своим размерам не превышает зиготу. Но заканчивается процесс дробления в тот момент, когда клетки зародыша становятся подобными соматическим клеткам человеческого организма.

Завершающий и начальный этап дробления зиготы уникальны по своей структуре. В процессе колоссальных изменений происходит полноценное асинхронное и субэквальное деление. Такие данные указывают на тот факт, что дробление касается всех участков зиготы, а бластомеры появляются одинакового размера. Если клетки различны по объему, то при дроблении зиготы происходит неодновременное митотическое деление.

Не слишком плотный конгломерат создается бластомерами примерно на восьмиклеточной стадии развития зиготы. Хотя на шестые сутки после оплодотворения, приблизительно после третьей ступени деления, клетки создают плотную структуру внутри зародыша. Такая работа именуется компактизацией и провоцирует отслойку внутренних бластомеров от наружных. Типы дробления зиготы различаются по своему периоду, и вышеупомянутая стадия – это морула. Такие центральные образования создают основную клеточную массу. А клетки, соединенные плотными контактами, служат своеобразным барьером, который призван защищать внутреннюю структуру морулы. То есть периферийные клетки создают трофобласт – клеточная масса внешнего типа.

Завершающие процессы дробления зиготы

В результате дробления зиготы клеточный организм превращается в зародыш. Только на четвертый день после оплодотворения зигота проникает в полость матки. В зародыше формируется своеобразная жидкостная полость – бластоцель. Теперь эмбрион представляет собой пузырек и носит имя - бластоцист. Внутри организма присутствует клеточный эмбриобласт – это внутренняя масса. Именно из этой «материи» образуется сам эмбрион и его некоторые наружные органы, которые визуализируются вне зародыша. Если внутренняя клеточная масса начнет свое деление, то такой факт приведет к образованию близнецов.

Зародышевая часть плаценты формируется на основе трофобласта, именно он создает хорион. Примерно на четвертый день после оплодотворения клетки разрушают оболочку, то есть они изменяют прозрачную часть зародыша. Именно таким образом зигота готовится к следующему этапу своего преображения.

Образуется зигота, способная к дальнейшему развитию. Деление зиготы называют дроблением. Дробление – это многократное деление зиготы после оплодотворения, в результате которого образуется многоклеточный зародыш.

Зигота делится очень быстро, клетки уменьшаются в размерах и не успевают расти. Поэтому зародыш не увеличивается в объеме. Клетки, образующиеся в результате , называются бластомерами, а перетяжки, отделяющие их друг от друга, называются бороздами дробления.

По направлению различают следующие борозды дробления: меридиональные – это борозды, которые делят зиготу от анимального к вегетативному полюсу; экваториальная борозда разделяет зиготу по экватору; широтные борозды проходят параллельно экваториальной борозде; тангенциальные борозды проходят параллельно поверхности зиготы.

Экваториальная борозда всегда одна, а меридиональных, широтных и тангенциальных может быть много. Направление борозд дробления всегда определяется положением веретена деления.
Дробление всегда проходит по определенным правилам:

Первое правило отражает местоположение веретена дробления в бластомере, а именно:
– веретено дробления располагается в сторону наибольшей протяженности цитоплазмы, свободной от включений.

Второе правило отражает направление борозд дробления:
– борозды дробления проходят всегда перпендикулярно веретену деления.

Третье правило отражает скорость прохождения борозд дробления:
– скорость прохождения борозд дробления обратно пропорционально количеству желтка в яйцеклетке, т.е. в той части клетки, где желтка мало, борозды будут проходить с большей скоростью, а в той части, где желтка больше, скорость прохождения борозд дробления замедляется.

Дробление зависит от количества и местоположения желтка в яйцеклетке. При небольшом содержании желтка дробится вся зигота, при значительном количестве дробится только часть зиготы, свободная от желтка. В связи с этим яйцеклетки разделяют на голобластические (дробящиеся полностью) и меробластические (с частичным дроблением). Следовательно, дробление зависит от количества желтка и с учетом ряда признаков подразделяется: по полноте охвата процессом материала зиготы на полное и неполное; по отношению размеров образующихся бластомеров на равномерное и неравномерное и по согласованности делений бластомеров – синхронное и асинхронное.

Полное дробление может быть равномерным и неравномерным. Полное равномерное характерно для яйцеклеток с небольшим количеством желтка и его более или менее равномерным расположением в . Таким типом дробится яйцеклетка . В этом случае первая борозда проходит от анимального к вегетативному полюсу, образуется два бластомера; вторая борозда тоже меридиональная, но проходит перпендикулярно первой, образуются четыре бластомера. Третья – экваториальная, образуются восемь бластомеров. После этого идет чередование меридиональных и широтных борозд дробления. Количество бластомеров после каждого деления увеличивается кратно двум (2; 4; 16; 32 и т.д.). В результате такого дробления образуется шарообразный зародыш, который называется бластулой . Клетки, которые образуют стенку бластулы, называют бластодермой, а полость внутри бластоцелью. Анимальная часть бластулы называется – крышей, а вегетативная часть – дном бластулы.


Полное неравномерное дробление характерно для яйцеклеток со средним содержанием желтка, расположенным в вегетативной части. Такие яйцеклетки характерны для круглоротых и . При этом типе дробления образуются бластомеры неодинаковых размеров. В анимальном полюсе образуются мелкие бластомеры, которые называются микромерами, а в вегетативном – крупные – макромеры. Первые две борозды, как и у ланцетника, проходят меридионально; третья борозда соответствует экваториальной борозде, но сдвинута от экватора к анимальному полюсу. Поскольку в анимальном полюсе находится свободная от желтка цитоплазма, то здесь дробление происходит быстрее и образуются мелкие бластомеры. В вегетативном полюсе содержится основная масса желтка, поэтому борозды дробления проходят медленнее и образуются крупные бластомеры.

Неполное дробление характерно для телолецитальных и центролецитальных яйцеклеток. В дроблении принимает участие только часть яйца, свободная от желтка. Неполное дробление делится на дискоидальное (костистые , пресмыкающиеся, птицы) и поверхностное (членистоногие).

Неполным дискоидальным дроблением делятся телолецитальные яйцеклетки, у которых большое количество желтка сконцентрировано в вегетативной части. У этих яйцеклеток безжелтковая часть цитоплазмы в виде зародышевого диска распластана на желтке в анимальном полюсе. Дробление происходит только в области зародышевого диска. Вегетативная часть яйцеклетки, заполненная желтком, участия в дроблении не принимает. Толщина зародышевого диска незначительна, поэтому веретена дробления при первых четырех делениях располагаются горизонтально, а борозды дробления проходят вертикально. Образуется один ряд клеток. После нескольких делений клетки становятся высокими и веретена дробления располагаются в них в вертикальном направлении, а борозды дробления проходят параллельно поверхности яйца. В результате зародышевый диск превращается в пластинку, состоящую из нескольких рядов клеток. Между зародышевым диском и желтком возникает небольшая полость в виде щели, которая аналогична бластоцели.

Неполное поверхностное дробление наблюдается в центролецитальных яйцеклетках с большим количеством желтка в его середине. Цитоплазма в таких яйцеклетках располагается по периферии и незначительная ее часть в центре около ядра. Вся остальная часть клетки заполнена желтком. Через массу желтка проходят тонкие цитоплазматические тяжи, соединяющие периферическую цитоплазму с околоядерной. Дробление начинается с деления ядер, в результате количество ядер увеличивается. Они окружаются тонким ободком цитоплазмы, передвигаются к периферии и располагаются в свободной от желтка цитоплазме. Как только ядра попадают в поверхностный слой, он делится соответственно их количеству на бластомеры. В результате такого дробления вся центральная часть цитоплазмы перемещается к поверхности и сливается с периферической. Снаружи образуется сплошная бластодерма, из которой развивается зародыш, а внутри находится желток. Поверхностное дробление свойственно яйцеклеткам членистоногих.

На характер дробления оказывают влияние и свойства цитоплазмы, которые определяют взаимное расположение бластомеров. По этому признаку выделяют радиальное, спиральное и билатеральное дробление. При радиальном дроблении каждый верхний бластомер располагается точно под нижним (кишечнополостные, иглокожие, ланцетник и др.). При спиральном дроблении каждый верхний бластомер смещен относительно нижнего наполовину, т.е. каждый верхний бластомер располагается между двумя нижними. В этом случае бластомеры располагаются как бы по спирали (черви, моллюски). При билатеральном дроблении через зиготу можно провести только одну плоскость, по обеим сторонам которой будут наблюдаться одинаковые бластомеры (круглые черви, асцидии).