Развитие нервной системы в филогенезе. Филогенез нервной системы. в) Класс “Головоногие”

В филогенетическом ряду существуют организмы различной степени сложности. Учитывая принципы их организации, их можно разделить на две большие группы.

Тип Хордовые (от просто устроенного ланцетника до человека) имеют общий план строения. Остальные типы животных имеют различные принципы организации.

Несмотря на разный уровень сложности различных животных, перед их нервной системой стоят одни задачи. Это, во-первых, объединение всех органов и тканей в единое целое (регуляция висцеральных функций) и, во-вторых, обеспечение связи с внешней средой, а именно – восприятие ее стимулов и ответ на них (организация поведения и движения).

Клетки нервной системы животных устроены принципиально одинаково. С усложнением строения животного заметно изменяется структура нервной системы. Совершенствование нервной системы в филогенетическом ряду идет через концентрацию нервных элементов в узлах и появление длинных связей между ними. Следующим этапом является цефализация – образование головного мозга, который берет на себя функцию формирования поведения. Уже на уровне высших беспозвоночных (насекомые) появляются прототипы корковых структур (грибовидные тела), в которых тела клеток занимают поверхностное положение. У высших хордовых животных в головном мозге уже имеются настоящие корковые структуры, и развитие нервной системы идет по пути кортикализации, т.е. передачи всех высших функций коре головного мозга.

Следует отметить, что с усложнением структуры нервной системы предыдущие образования не исчезают. В нервной системе высших организмов остаются и сетевидная, и цепочная, и ядерная структуры, характерные для предыдущих ступеней развития.

Нервная система беспозвоночных животных

Для беспозвоночных животных характерно наличие нескольких источников происхождения нервных клеток. У одного и того же типа животных нервные клетки могут одновременно и независимо происходить из трех разных зародышевых листков. Полигенез нервных клеток беспозвоночных является основой разнообразия медиаторных механизмов их нервной системы.

Нервная система впервые появляется у кишечнополостных животных. Кишечнополостные – это двухслойные животные. Их тело представляет собой полый мешок, внутренняя полость которого является пищеварительной полостью. Нервная система кишечнополостных принадлежит к диффузному типу. Каждая нервная клетка в ней длинными отростками соединена с несколькими соседними, образуя нервную сеть. Нервные клетки кишечнополостных не имеют специализированных поляризованных отростков. Их отростки проводят возбуждение в любую сторону и не образуют длинных проводящих путей. Контакты между нервными клетками диффузной нервной системы бывают нескольких типов. Существуют плазматические контакты, обеспечивающие непрерывность сети (анастомозы). Появляются и щелевидные контакты между отростками нервных клеток, подобные синапсам. Причем среди них существуют контакты, в которых синаптические пузырьки располагаются по обе стороны контакта – так называемые симметричные синапсы, а есть и несимметричные синапсы: в них везикулы располагаются только с одной стороны щели.

Нервные клетки типичного кишечнополостного животного гидры равномерно распределены по поверхности тела, образуя некоторые скопления в районе ротового отверстия и подошвы. Диффузная нервная сеть проводит возбуждение во всех направлениях. При этом волну распространяющегося возбуждения сопровождает волна мышечного сокращения.

Следующим этапом развития беспозвоночных является появление трехслойных животных плоских червей . Подобно кишечнополостным они имеют кишечную полость, сообщающуюся с внешней средой ротовым отверстием. Однако у них появляется третий зародышевый слой – мезодерма и двусторонний тип симметрии. Нервная система низших плоских червей принадлежит диффузному типу. Однако из диффузной сети уже обособляются несколько нервных стволов.

У свободно живущих плоских червей нервный аппарат приобретает черты централизации. Нервные элементы собираются в несколько продольных стволов (для самых высокоорганизованных животных характерно наличие двух стволов), которые соединяются между собой поперечными волокнами (комиссурами) . Упорядоченная таким образом нервная система называется ортогоном . Стволы ортогона представляют собой совокупность нервных клеток и их отростков.

Наряду с двухсторонней симметрией у плоских червей оформляется передний конец тела, на котором концентрируются органы чувств (статоцист, «глазки», обонятельные ямки, щупальца). Вслед за этим на переднем конце тела появляется скопление нервной ткани, из которой формируется мозговой или церебральный ганглий. У клеток церебрального ганглия появляются длинные отростки, идущие в продольные стволы ортогона.

Таким образом, ортогон представляет собой первый шаг к централизации нервного аппарата и его цефализации (появлению мозга). Централизация и цефализация являются результатом развития сенсорных (чувствительных) структур.

Следующим этапом развития беспозвоночных животных является появление сегментированных животных – кольчатых червей . Их тело метамерно, т.е. состоит из сегментов. Структурной основой нервной системы кольчатых червей является ганглий – парное скопление нервных клеток, расположенных по одному в каждом сегменте.

Нервные клетки в ганглии размещаются по периферии. Центральную его часть занимает нейропиль переплетение отростков нервных клеток и глиальные клетки. Ганглий расположен на брюшной стороне сегмента под кишечной трубкой. Он посылает свои чувствительные и двигательные волокна в свой сегмент и в два соседних. Таким образом, каждый ганглий имеет три пары боковых нервов, каждый из которых является смешанным и иннервирует свой сегмент. Приходящие с периферии чувствительные волокна попадают в ганглий через вентральные корешки нервов. Двигательные волокна выходят из ганглия по дорсальным корешкам нервов. Соответственно этому чувствительные нейроны расположены в вентральной части ганглия, а двигательные – в дорсальной. Кроме того, в ганглии есть мелкие клетки, иннервирующие внутренние органы (вегетативные элементы), они расположены латерально – между чувствительными и двигательными нейронами. Среди нейронов чувствительной, двигательной или ассоциативной зон ганглиев кольчатых червей не обнаружено группирования элементов, нейроны распределены диффузно, т.е. не образуют центров.

Ганглии кольчатых червей соединены между собой в цепочку.

Каждый последующий ганглий объединен в цепочку посредством нервных стволов, которые называются коннективами . Два нервных ствола соединяются посредством комиссур . На переднем конце тела кольчатых червей два слившихся ганглия образуют крупный подглоточный нервный узел . Коннективы от подглоточного нервного узла, огибая глотку, вливаются в надглоточный нервный узел, который является самой ростральной (передней) частью нервной системы. В состав надглоточного нервного ганглия входят только чувствительные и ассоциативные нейроны. Двигательных элементов там не обнаружено. Таким образом, надглоточный ганглий кольчатых червей является высшим ассоциативным центром, он осуществляет контроль над подглоточным ганглием. Подглоточный ганглий контролирует нижележащие узлы, он имеет связи с двумя-тремя последующими ганглиями, тогда как остальные ганглии брюшной нервной цепочки не образуют связей длинней, чем до соседнего ганглия.

В филогенетическом ряду кольчатых червей есть группы с хорошо развитыми органами чувств (многощетинковые черви). У этих животных в надглоточном ганглии обособляются три отдела. Передний отдел иннервирует щупальца, средняя часть иннервирует глаза и антенны. И, наконец, задняя часть развивается в связи с совершенствованием химических органов чувств.

Сходную структуру имеет нервная система членистоногих, т.е. построена по типу брюшной нервной цепочки, однако может достигать высокого уровня развития. Она включает в себя значительно развитый надглоточный ганглий, выполняющий функцию мозга, подглоточный ганглий, управляющий органами ротового аппарата, и сегментарные ганглии брюшной нервной цепочки. Ганглии брюшной нервной цепочки могут сливаться между собой, образуя сложные ганглиозные массы.

Головной мозг членистоногих состоит из трех отделов: переднего – протоцеребрума, среднего – дейтоцеребрума и заднего – тритоцеребрума. Сложным строением отличается мозг насекомых . Особенно важными ассоциативными центрами насекомых являются грибовидные тела, располагающиеся на поверхности протоцеребрума, причем, чем более сложным поведением характеризуется вид, тем более развиты у него грибовидные тела. Поэтому наибольшего развития грибовидные тела достигают у общественных насекомых.

Практически во всех отделах нервной системы членистоногих существуют нейросекреторные клетки . Нейросекреты играют важную регулирующую роль в гормональных процессах членистоногих.

В процессе эволюции первоначально диффузно расположенные биполярные нейросекреторные клетки воспринимали сигналы либо отростками, либо всей поверхностью клетки, затем сформировались нейросекреторные центры, нейросекреторные тракты и нейросекреторные контактные области. В последующем произошла специализация нервных центров, увеличилась степень надежности во взаимоотношениях двух основных регуляторных систем (нервной и гуморальной) и сформировался принципиально новый этап регуляции – подчинение нейросекреторным центрам периферических эндокринных желез.

Нервная система моллюсков также имеет ганглионарное строение . У простейших представителей типа она состоит из нескольких пар ганглиев. Каждая пара ганглиев управляет определенной группой органов: ногой, висцеральными органами, легкими и т.д. – и расположена рядом с иннервируемыми органами или внутри их. Одноименные ганглии попарно соединены между собой комиссурами. Кроме того, каждый ганглий связан длинными коннективами с церебральным комплексом ганглиев.

У более высокоорганизованных моллюсков (головоногие) нервная система преобразуется. Ганглии ее сливаются и образуют общую окологлоточную массу – головной мозг. От заднего отдела головного мозга отходят два крупных мантийных нерва и образуют два больших звездчатых ганглия. Таким образом, у головоногих наблюдается высокая степень цефализации.

  • 8. Цитоархитектоника коры больших полушарий. Первичные, вторичные и третичные корковые зоны.
  • 9. Строение и функции продолговатого мозга, моста. Ретикулярная формация.
  • 10. Строение и функции мозжечка, ножек мозга, четверохолмия.
  • 11. Строение и функции промежуточного мозга.
  • 12. Строение и функции долей больших полушарий головного мозга. Функциональное назначение подкорковых узлов.
  • 13. Строение и функции спинного мозга. Зоны сегментарной иннервации.
  • 14. Простейшая спинномозговая рефлекторная дуга. Важнейшие рефлексы, замыкающиеся в спинном мозге.
  • 15. Роль вегетативной нервной системы в регуляции гомеостаза и адаптации к среде.
  • 16. Строение, функции и симптомы поражения симпатического отдела вегетативной нервной системы.
  • 17. Строение, функции и симптомы поражения парасимпатического отдела вегетативной нервной системы.
  • 18. Симптомы поражения и методы исследования вегетативной нервной системы.
  • 19. Регуляция двигательного акта. Произвольные и непроизвольные движения.
  • 20. Пирамидная системы, ее центры и проводящие пути. Признаки центрального и периферического паралича.
  • 21. Строение и функции экстрапирамидной системы. Симптомы поражения ее стриарного и паллидарного отделов.
  • 22. Гиперкинезы, их клиническая характеристика. Речевые нарушения при гиперкинезах.
  • 23. Мозжечок: строение, функции, симптомы поражения. Речевые нарушения при поражении мозжечка.
  • 24. Чувствительность, ее виды. Строение проводящих путей чувствительности.
  • 25. Синдромы чувствительных расстройств, их диагностическое значение.
  • 26. Методы исследования чувствительности.
  • 27. Строение, функции, симптомы поражения и методы исследования чувствительных черепных нервов.
  • VIII пара (преддверно-улитковый нерв). Состоит из двух функционально различных частей – слуховой (улитковой) и вестибулярной (преддверной).
  • 28. Черепные нервы глазодвигательной группы: строение, функции, симптомы поражения.
  • 29. Характеристика лицевого и тройничного нервов.
  • 30. Строение, функции, симптомы поражения и методы исследования черепных нервов каудальной группы (языкоглоточный, блуждающий, подъязычный нервы).
  • 31. Сравнительная характеристика бульбарного и псевдобульбарного паралича. Речевые нарушения бульбарного и псевдобульбарного генеза.
  • 32. Локализация функций в цнс. Основные центры коры больших полушарий.
  • Основные центры коры больших полушарий головного мозга человека
  • 33. Гнозис и его расстройства. Зрительные, слуховые, сенситивные, вкусовые, обонятельные агнозии. Диагностика агнозий.
  • 34. Праскис, методы его исследования. Характеристика апраксий.
  • 35. Память, мышление, сознание: виды их нарушений и методы исследования.
  • 36. Мозговая организация речевой функциональной системы.
  • 37. Речевые расстройства в детском возрасте, связанные с органическим поражением цнс: классификация и клиническая диагностика.
  • 38. Афазия: этиология, патогенез, клинические формы.
  • 39. Алалия: этиология и патогенез. Характеристика моторной и сенсорной алалии, влияние на психическое развитие детей.
  • 40. Дизартрия: этиология и патогенез. Характеристика видов дизартрии.
  • 41. Понятие о невропатологических симптомах и синдромах, их диагностическое значение.
  • 42. Пути установления неврологического диагноза: жалобы, анамнез, неврологический осмотр.
  • 43.Современные методы исследования нервной системы в норме и патологии.
  • 44. Детские церебральные параличи как неврологическая и дефектологическая проблема. Этиологические факторы дцп
  • 45. Характеристика основных клинических форм дцп
  • 46. Нарушений движений, речи и интеллекта при дцп. Принципы абилитации больных дцп
  • 47. Травмы головного мозга у детей: классификация, симптомы, диагностика.
  • Классификация чмт Существует несколько принципов классификации черепно-мозговой травмы в зависимости от повреждения черепа, по характеру повреждения головного мозга, по степени тяжести.
  • 48. Остаточные явления после мозговой травмы. Лечение и реабилитация черепно-мозговой травмы.
  • 49. Этиология, патогенез и классификация эпилепсии. Основные клинические формы.
  • Основные причины симптоматической эпилепсии:
  • При распространении импульса возможны три варианта:
  • 50. Характеристика большого и малого судорожных припадков. Оказание первой помощи.
  • Первая помощь при судорожном и/или эпилептическом приступе
  • 51. Неврозы: причины, классификация, основные формы.
  • 52. Недержание мочи и кала у детей: этиология, патогенез, клинические формы, меры профилактики.
  • 53. Этиология, патогенез и клинические симптомы менингита.
  • 54. Энцефалиты: клинические формы, диагностика, исходы, остаточные явления.
  • 55. Полиомиелит: этиология, формы, симптомы, остаточные явления.
  • Патогенез полиомиелита
  • Клиника полиомиелита
  • 56.Аномалии развития нервной системы. Клиническая характеристика микроцефалии, гидроцефалии.
  • 57. Поражение нервной системы при хромосомных болезнях и наследственных болезнях обмена веществ.
  • 58. Сосудистые заболевания головного мозга: этиология, патогенез, клинические формы, методы профилактики.
  • 59. Острые нарушения мозгового кровообращения: формы, симптомы, исходы. Нарушения речи при инсультах.
  • 60. Принципы абилитации и реабилитации детей с заболеваниями нервной системы и органов чувств.
  • ОТВЕТЫ ОСНОВЫ НЕВРОПАТОЛОГИИ

    1 Филогенез нервной системы.

    Эволюция структуры и функции нервной системы происходила как в направлении развития отдельных ее элементов (нервных клеток), так и по линии формирования ее новых прогрессивных свойств в условиях взаимодействия с окружающей средой. Важнейшими процессами на этом пути являются централизация, специализация, цефализация и кортикализация не рвной системы.

    Под централизацией понимают группирование нервных элементов в морфофункциональные конгломераты в стратегических пунктах тела. Уже на уровне гидроидов отмечается сгущение нейронов в области гипостома (функция питания) и подошвы (фиксация к субстрату). Переход к свободному передвижению у медузы приводит к формированию дистантных рецепторов и чувствительных краевых телец. У беспозвоночных централизация выражена еще более ярко – появляются нервные ганглии (узлы), ассоциативные и двигательные клетки с их отростками собираются в несколько пар продольных стволов, соединенных поперечными нервными тяжами. Формируются брюшная нервная цепочка и головные ганглии. Каждый нервный узел обеспечивает деятельность определенного сегмента тела и функционирует относительно автономно. Эволюционно молодые структуры, как правило, оказывают тормозное влияние на более древние.

    Специализация – это подчиненность одних ганглиев тела другим, дальнейшее развитие специфичности нервных клеток, появление афферентных и эфферентных систем. Специализация нервных клеток сопровождалась появлением синапсов, обеспечивающих односторонее проведение нервных импульсов. На этом этапе возникают простейшие кльцевые структуры регуляции отдельных функций

    организма.

    Дальнейшее эволюционное развитие нервной системы шло по пути цефализации (греч. kерhаlе – голова) – подчинения задних отделов ЦНС головным. Возникший осевой градиент тела является продолжением наметившегося еще у кишечнополостных процесса сгущения нервных элементов на переднем конце тела и представляет решающий момент эволюции головного мозга. В итоге в головном мозге сформировались жизненно важные центры автоматической регуляции различных функций организма. Эти центры находятся между собой в сложных иерархических взаимоотношениях.

    У млекопитающих цефализация дополняется кортикализацией (лат. соrtех – кора) – формированием и совершенствовани ем коры больших полушарий и мозолистого тела, соединяющего правое и левое полуш ария между собой. Так, у человека площадь коры головного мозга занимает более 90 % всей поверхности мозга, причем около 1/3 приходится на лобные доли. Если в стволе мозга и подкорковых узлах специализированные ганглии морфологически и функционально обособлены друг от друга, то кора больших полушарий в этом отношении обладает рядом уникальных свойств. Наиболее важ ными из них являются высокая структурная и функциональная пластичность и надежность. Кора больших полушарий содержит не только специфические проекционные (соматочувствительные, зрительные, слуховые), но и значительные по площади ассоциативные зоны. Последние служат для интеграции различных сенсорных влияний с прошлым опытом с целью формирования поведенческих актов.

    Основные этапы филогенеза нервной системы

    Нервная система в процессе филогенеза проходит ряд основных этапов (типов) – диффузный, узловой и трубчатый .

    I этап – диффузная (сетевидная) нервная система . Такой тип нервной системы характерен для кишечнополостных. На этом этапе нервная система, например гидры, состоит из нервных клеток, многочисленные отростки которых соединяются друг с другом в разных направлениях, образуя сеть, диффузно пронизывающую все тело животного. При раздражении любой точки тела возбуждение разливается по всей нервной сети и животное реагирует движением всего тела. В диффузной нервной системе имеются не только «локальные нервные» сети, образованные коротко отростчатыми нейронами, но и «сквозные пути», проводящие возбуждение на сравнительно большое расстояние. Скорость распространения возбуждения по волокнам низкая и составляет несколько сантиметров в секунду. У свободноплавающих медуз появляются скопления нервных клеток (прототип нервных цен ров) в колоколе – краевые органы, выделяются сквозные проводящие пути, обеспечивающие определенную «адресность» в проведении возбуждения. Основной особенностью диффузной нервной системы является отсутствие четко выраженных входов и выходов, надежность, но энергетически эта система малоэффективна. Отражением этого этапа у человека является сетевидное строение интрамуральной нервной системы пищеварительного тракта.

    II этап – узловая нервная система, характерна для членистоногих. На этом этапе нервные клетки сближаются в отдельные скопления или группы, причем из скоплений клеточных тел получаются нервные узлы – центры, а из скоплений отростков – нервные стволы – нервы. При этом в каждой клетке число отростков уменьшается, и они получают определенное направление. Соответственно сегментарному строению тела, например у кольчатого червя, в каждом сегменте имеются сегментарные нервные узлы и нервные стволы. Последние соединяют узлы в двух направлениях: поперечные стволы связывают узлы данного сегмента, а продольные – узлы разных сегментов. Благодаря этому нервные импульсы, возникающие в какой-либо точке тела, не разливаются по всему телу, а распространяются по поперечным стволам в пределах данного сегмента. Продольные стволы связывают нервные сегменты в одно целое. На головном конце животного, который при движении вперед соприкасается с различными предметами окружающего мира, развиваю ся органы чувств, в связи с чем головные узлы развиваются сильнее остальных, являясь прообразом будущего головного мозга. Отражением этого этапа является сохранение примитивных черт в строении вегетативной нервной системы человека в виде разбросанности на периферии узлов и микроганглиев.

    III этап – трубчатая нервная система – высший этап структурной и функциональной эволюции нервной системы (характерна для хордовых). Все позвоночные, начиная от самых примитивных форм (ланцетник) и заканчивая человеком, имеют ЦНС в виде нервной трубки, оканчивающейся в головном конце большой ганглиозной массой – головным мозгом. Описанные выше тенденции развития нервной системы – централизация, специализация, цефализация – получают дальнейшее развитие на этом этапе.

    Филогенетические уровни структурно-функциональной организации ЦНС (по В.А. Карлову )

    В клиническом аспекте выделяют пять филогенетических уровней структурно-функциональной организации ЦНС: спинальный, стволовой, подкорковый, кора головного мозга, вторая сигнальная система.

    Спинальный уровень . Сегментарный спинальный аппарат представлен серым веществом и спинномозговыми узлами, в которых располагаются чувствительные нейроны. Сегментарный аппарат спинного мозга реализует простейшие спинальные рефлексы (безусловные, врож денные, видовые). При ограниченном повреждении сегментарного спинального аппарата развиваются изолированные повреждения в виде периферических параличей, расстройств поверхностной чувствительности и трофических нарушений.

    Стволовой уровень . Мозговой ствол (продолговатый мозг, мост, средний мозг) содержит сегментарный аппарат (двигательные и чувствительные ядра черепных нервов), специализированные структуры (нижняя и верхняя оливы, черная субстанция, красное ядро и др.), проводящие пути и ретикулярную формацию. Даже незначительные поражения мозгового ствола могут приводить к тяжелым последствиям. Под корковый уровень включает стриопаллидарную систему (чечевицеобразное и хвостатое ядра) и структуры, реализующие видовые безусловные рефлексы инстинктивного поведения (красное ядро и черная субстанция). Осно ными при поражении подкорковых ядер являются характерные расстройства движений в виде акинезии или, наоборот, избыточных движений – гиперкинезов.

    Кора головного мозга – следующий филогенетический уровень ЦНС. Она является базой при обретенных рефлексов. У человека практически вся произвольная моторика, включая прямохождение, является приобретенной и сугубо индивидуальной. В коре наружной поверхности больших полушарий головного мозга выделяют две функционально различные части: сенсорную (теменная, затылочная и височная кора) и моторную (лобная кора). Сенсорная часть представлена корковыми отделами кожно-кинестетического, зрительного и слухового анализаторов, при ее поражении нарушаются соответствующие сенсорные функции. Моторная часть контролирует произвольные движения противоположной половины тела, а также обеспечивает высшие психические функции.

    Высшим уровнем филогенетического развития является вторая сигнальная система – речь, представленная в ряде областей левого полушария. Благодаря речевой функции стало возможным использование всего социального опыта, накопленного человечеством.

    Филогенез нервной системы – история формирования и совершенствования ее структур в процессе исторического развития вида Homo sapiens . В филогенетическом ряду рассматривают организмы различной степени сложности. Беспозвоночные животные относятся к разным типам и имеют различные принципы организации. Хордовые животные (от просто устроенного ланцетника до человека) принадлежат к одному типу и имеют общий план строения. На первом этапе совершенствование нервной системы в филогенетическом ряду идет через концентрацию нервных элементов в узлах и появление длинных связей между ними. Следующим этапом является цефализация – образование головного мозга, который играет доминирующую роль и выполняет функцию формирования поведения. Уже на уровне высших беспозвоночных (насекомые) появляются прототипы корковых структур (грибовидные тела), в которых тела клеток занимают поверхностное положение. У высших хордовых животных в головном мозге уже имеются настоящие корковые структуры, и развитие нервной системы идет по пути кортиколизации, т.е. передачи всех высших функций коре головного мозга (Шмидт Р., Тевс Г.., 1996).

    Следует отметить, что с усложнением структуры нервной системы предыдущие образования не исчезают. В нервной системе высших организмов остаются и сетевидная, и цепочная, и ядерная структуры, характерные для предыдущих ступеней развития.

    Нервная система беспозвоночных . Нервная система впервые появляется у двуслойных кишечнополостных и принадлежит к диффузному типу. Следующим этапом развития беспозвоночных является появление трехслойных животных – плоских червей; у них появляется третий зародышевый слой – мезодерма и двусторонний тип симметрии, оформляется передний конец тела. В нервной системе диффузного типа у низших плоских червей обособляются несколько нервных стволов (позже два), нервный аппарат приобретает черты централизации. На головном конце концентрируются органы чувств (статоцист, «глазки», обонятельные ямки, щупальца), там же появляется церебральный ганглий. Таким образом, у беспозвоночных централизация и цефализация являются результатом развития сенсорных (чувствительных) структур.

    С появлением сегментированных животных – кольчатых червейнервная система становится метамерной. Структурной основой нервной системы кольчатых червей является ганглий, расположенный на брюшной стороне сегмента под кишечной трубкой, по одному в каждом сегменте. Ганглии кольчатых червей соединены между собой в цепочку. Каждый последующий ганглий связан с предыдущим при помощи нервных стволов. На переднем конце тела кольчатых червей слившиеся ганглии образуют крупные подглоточный и надглоточный нервные узлы.



    Подобие головного мозга членистоногих фактически представляет собой слившиеся надглоточный и подглоточный узлы и состоит из трех отделов: переднего – протоцеребрума, среднего – дейтоцеребрума и заднего – тритоцеребрума. Сложным строением отличается мозг насекомых. Особенно важными ассоциативными центрами насекомых являются грибовидные тела, располагающиеся на поверхности протоцеребрума и выполняющие сенсорные функции, причем чем более сложным поведением характеризуется вид, тем более развиты у него грибовидные тела. Поэтому наибольшего развития грибовидные тела достигают у общественных насекомых. Практически во всех отделах нервной системы членистоногих существуют нейросекреторные клетки. Нейросекреты играют важную регулирующую роль в гормональных процессах членистоногих.

    Нервная система позвоночных животных. У хордовых центральная нервная система представлена нервной трубкой, лежащей со спинной стороны животного. Передний конец трубки обыкновенно расширен и образует головной мозг, между тем как задняя цилиндрическая часть трубки является спинным мозгом.

    Расположение нервных элементов у позвоночных отличается от такового у беспозвоночных: нервные клетки помещаются в центральной части трубки, а волокна – в периферической.

    Нервная система беспозвоночных возникла путем обособления чувствующих клеток, расположенных в эпителии со спинной стороны, которые погружались глубже под защиту поверхностного эпителия. У предков хордовых животных, по-видимому, имелась продольная спинная полоса чувствующего эпителия, которая вся целиком погрузилась под эктодерму сначала в виде открытого желоба, а затем образовала замкнутую трубку с отверстием на переднем конце (невропор) (Гайворонский И.В., 2000) .

    У позвоночных животных органы зрения развиваются всегда за счет стенок самого мозга, а орган обоняния по своему происхождению связан с невропором. Большая часть трубки утратила значение чувствующего органа и превратилась в центральный нервный аппарат. Таким образом, трубчатая центральная нервная система хордовых животных не гомологична центральной нервной системе низших животных, а развилась из особого органа чувств (чувствующей пластинки).

    В филогенетическом ряду позвоночных развитие нервной системы идет по пути цефализации и кортиколизации функций. Преимущественное развитие головного мозга и усложнение его структуры, вышележащие отделы которого берут под свой контроль функции нижележащих структур (цефализация) тесно связаны с развитием у позвоночных сенсорных систем и интегративной деятельности. Кортиколизация выражается в преимущественном развитии коры конечного мозга, которая является производным плаща больших полушарий (Шмидт Р., Тевс Г.., 1996).

    Развитие головного мозга млекопитающих пошло по пути увеличения относительной площади новой коры за счет развития складчатости плаща, наползания его на все остальные отделы головного мозга. Возникают связи новой коры с остальными отделами ЦНС и, соответственно, структуры, обеспечивающие их. В заднем мозге появляется Варолиев мост, служащий для связи коры больших полушарий с мозжечком. Образуются средние ножки мозжечка, кроме того, в нем развиваются новые корковые структуры. В крыше среднего мозга появляется заднее двухолмие, с дорсальной стороны – ножки мозга. Продолговатый мозг приобретает пирамиды и оливы. Новая кора осуществляет почти все высшие сенсорные функции. За старой и древней корой остаются только обонятельные и висцеральные функции.

    У высших млекопитающих относительное представительство сенсорных функций в коре уменьшается. Все большую поверхность коры занимают ассоциативные зоны коры (Шмидт Р., Тевс Г.., 1996).

    Высшие интегративные функции у примитивных млекопитающих выполняют стриатум и кора, у высокоорганизованных – ассоциативные зоны новой коры.

    Все живое на Земле может существовать только при условии постоянной тесной связи с окружающей средой. В самой примитивной форме реагиро­вать на ее изменения могут одноклеточные (амебы) и про­стейшие многоклеточные (губки, медузы) организмы. На ран­них ступенях филогенеза эта функция выполняется гумо­ральной системой и эктодермой. Из последней в дальнейшем формируется специальная ткань -нервная, наделенная способностью воспринимать раздражения, проводить их в центры регуляции, перерабатывать там и давать быстрые и адекватные ответы.

    Всех беспозвоночных (черви, моллюски, иглокожие, членистоногие-рис. 1, 2) построена довольно просто-по диффузному или диффузно-ганглионарному типу, т. е. клетки рассеяны по всему орга­низму или часть их скапливается в виде ганглиев (подглоточный, надглоточный и др.). Постепенно происходит специ­ализация нервных клеток, узлов и нервных центров-они разделяются на афферентные, эфферентные и вегетативные.С появлением синапсов возможно только одностороннее проведение нервных импульсов.

    Рис. 1. Строение червя. 1 - ; 2 - пищевод.

    Афферентная система претерпевает дальнейшее усовершенствование: из нее образуются пять высокоспециализированных органов чувств-осязание, и . хордовых (рыбы, амфибии, рептилии, млекопитающие — рис. 3, 4, 5) приобретает сложное строение и состоит из головного и спинного мозга и связанных с ними периферических нервов. Головной мозг подразделяется на несколько отделов - продолговатый мозг, средний мозг, промежуточный мозг и подкорковые узлы. Направление филогенеза нервной системы у хордовых — это прогрессирующее развитие конечного (или большого) мозга, подкорковых узлов и особенно полушарий большого мозга. В кору теменной, височной и затылочной долей большого мозга перемещаются из среднего мозга центры общей чувствительности, вкуса, обоняния, слуха, зрения; в коре лобной Доли формируется двигательный анализатор.

    Рис. 2. Строение насекомого. 1- подглоточный узел.

    Развитие нервной системы в значительной степени подчинено задаче обеспечения необходимой для каждого вида моторной активности и те структуры, которые осуществляют эту функцию, тоже усложняются. На всех этапах эволюции способность к совершенным движениям имела большое значение. В условиях борьбы за существование медлительные и неловкие организмы погибали скорее.

    Рис. 3. Нервная система рыбы. 1 — mesencephalon; 2 — cerebellum; 3 — medulla oblongata; 4 — hypophysis; 5 — diencephalon; 6 — corpus striatum.

    У рыб, амфибии, птиц и даже низших млекопитающих подкорковые узлы, и ствол являются высшими центрами всех локомоций, как произвольных, так и непроизвольных. Вся информация, имеющая отношение к регуляции движений, концентрируется поэтому в полосатом теле, таламусе и среднем мозге, откуда по нисходящим путям стриопаллидарной системы и мозжечка импульсы направляются в спинной мозг и затем к мышцам.

    Рис. 4. Нервная система . 1 - pallium; 2 — cerebellum; 3 — medulla oblongata; 4 — hypophysis; 5 - mesencephalon; 6 - corpus striatum.

    При поражении прецентральной извилины у птиц и низших млекопитающих (голубь, кролик и др.) параличи или парезы не развиваются и отмечается только снижение общего тонуса и активности. У высших обезьян и особенно у человека центр произвольных движений переместился в кору лобной доли» прежде всего в прецентральную извилину.

    Рис. 5. Нервная система млекопитающего. 1 — pallium; 2 — cerebellum; 3 — medulla oblongata; 4 — pons; 5 — crura cerebri; 6 — hypophysis; 7 — lobus olfactorius.

    Причина дальнейшего усложнения моторной системы у человека (образование центра в коре большого мозга, пирамидного тракта)- это необходимость выполнять большое количество высоко дифференцированных движений (изготовление и использование разнообразных орудий труда), с чем старые образования (ствол, базальные ядра) не могли справиться. На самой высокой ступени филогенетического развития в коре создаются речевые центры. Полушария большого мозга становятся регулятором (по выражению И. П. Павлова, «распорядителем и распределителем») всей сознательной деятельности человека.

    Статья на тему Филогенез нервной системы

    Эволюция нервной системы у животных проходила в течение длительного времени, и она условно может быть разделена на три этапа.

    Первый этап характеризуется формированием наиболее просто устроенной диффузной (сетевидной) нервной системы. Данный вид нервной системы представлен у примитивных животных, например у губок. В ней различают два типа клеток:

    • – первые специализированы на приеме информации извне. Такие клетки называют рецепторными;
    • – вторые находятся в глубине организма, связаны отростками друг с другом и с клетками, обеспечивающими ответную реакцию. Эти клетки называют эффекторными.

    Второй этап – формирование нервной системы узловой формы. Этот тип нервной системы встречается в основном у червей, насекомых и др. В ходе эволюции в нервной системе у этих животных образовались узлы (скопление нервных клеток), соединяющиеся между собой поперечными и продольными нервными стволами. От этих узлов отходят нервы, разветвления которых заканчиваются в пределах данного сегмента. В головном конце тела располагается одна пара более крупных узлов. Эти узлы развиты сильнее других и являются прообразом головного мозга.

    Достоинством такого строения нервной системы является то, что при раздражении определенных участков поверхности тела животного в ответную реакцию вовлекаются не все нервные клетки тела, а только нервные структуры данного сегмента.

    Третий этап заключается в образовании нервными клетками непрерывного нервного тяжа, внутри которого имеется полость – трубчатая нервная система, характерная для всех представителей типа хордовых. Трубчатая нервная система у высших представителей хордовых (в том числе и у человека) состоит из ряда однотипных, повторяющихся структур, или сегментов (метамерность строения). Отростки нейронов, входящих в состав данного нервного сегмента, иннервируют определенный участок тела и его мускулатуру. Типичным вариантом трубчатой нервной системы является спинной мозг.

    Онтогенез нервной системы

    Знания из области эмбриологии необходимы психологам для понимания строения и функционирования различных структур организма человека. Так, в процессе индивидуального развития человеческого организма (онтогенеза) выделяются два значимых этапа, отделенных друг от друга моментом рождения. Первый этап – внутриутробный (пренатальный) – длится от момента оплодотворения до рождения ребенка; второй этап – внеутробный (постнатальный) – длится от момента рождения ребенка до смерти человека.

    С учетом особенностей пренатального онтогенеза (внутриутробного периода развития) эмбриологи выделяют эмбриональную и фетальную фазы развития. Эмбриональная фаза (первые восемь недель) характеризуется основными процессами закладки тканей и органов. Фетальная фаза продолжается с девятинедельного возраста до рождения плода.

    В свою очередь эмбриональную фазу разделяют на пять условных периодов:

    • – период оплодотворения и образования зиготы (одноклеточного зародыша).
    • – период дробления зиготы на дочерние клетки.
    • – период гаструляции.
    • – период обособления тела зародыша.
    • – период гисто- и органогенеза (период формирования органов и тканей).

    В третьем периоде жизни эмбриона (гаструляция), который в основном завершается в течение второй недели внутриутробного развития, происходит превращение зародыша в трехслойное полостное образование – гаструлу. К концу этого периода развития отчетливо определяются зародышевые листки: наружный, или эктодерма, внутренний, или энтодерма, и средний слой, расположенный между ними, или мезодерма.

    Из эктодермы в дальнейшем развивается кожа и все ее производные, а также она дает начало развитию центральной нервной системы. Из мезодермы развиваются органы опорно-двигательной и сердечно-сосудистой систем, а также некоторые внутренние органы. Из энтодермы , оказавшейся внутри тела зародыша, образуется большинство внутренних органов.

    Как было отмечено ранее, центральная нервная система развивается из наружного зародышевого листка – эктодермы. На ранних стадиях онтогенеза в дорсальных отделах туловища зародыша эктодермальные клетки трансформируются в нервную (медуллярную) пластинку. Последняя вначале состоит из одного слоя клеток. В связи с тем что интенсивность размножения клеток в различных участках медуллярной пластинки неодинакова, последняя прогибается и постепенно приобретает вид бороздки или желобка.

    Рост боковых отделов этой нервной бороздки приводит к тому, что ее края сближаются, а затем срастаются. Следовательно, медуллярная бороздка, замыкаясь в своих дорсальных отделах, превращается в первичную нервную трубку. В период замыкания нервная трубка состоит уже из трех слоев – из внутреннего слоя в дальнейшем развивается эпендимальная выстилка центрального канала спинного мозга и полостей желудочков мозга, из среднего (плащевого) слоя в дальнейшем развивается серое вещество мозга, наружный слой в дальнейшем превращается в белое вещество мозга.

    В период замыкания нервной трубки образуются ганглиозные пластинки, располагающиеся дорсальнее нервной трубки. Впоследствии из ганглиозной пластинки образуются чувствительные узлы спинномозговых и черепных нервов и периферический отдел вегетативной нервной системы.

    Вслед за обособлением ганглиозной пластинки нервная трубка в ее краниальном (головном) конце заметно утолщается. Задняя (каудальная) часть нервной трубки в дальнейшем превращается в спинной мозг. Головной (краниальный) отдел нервной трубки является зачатком, из которого развивается головной мозг.