Mga numero pagkatapos ng isang trilyon. Ang pinakamalaking bilang sa mundo. Mga wastong pangalan para sa malalaking numero

Marami ang interesado sa mga tanong tungkol sa kung gaano karaming mga numero ang tinatawag at kung anong numero ang pinakamalaki sa mundo. Kasama ang mga ito mga kawili-wiling tanong at tutuklasin natin sa artikulong ito.

Kwento

Ang timog at silangang Slavic na mga tao ay gumamit ng alphabetic numbering upang magsulat ng mga numero, at ang mga titik lamang na nasa alpabetong Greek. Sa itaas ng titik, na nagsasaad ng numero, naglagay sila ng espesyal na icon na "titlo". Ang mga numerong halaga ng mga titik ay tumaas sa parehong pagkakasunud-sunod kung saan ang mga titik ay sinundan sa alpabetong Greek (sa Slavic na alpabeto, ang pagkakasunud-sunod ng mga titik ay bahagyang naiiba). Sa Russia, ang Slavic numbering ay napanatili hanggang sa katapusan ng ika-17 siglo, at sa ilalim ni Peter I lumipat sila sa "Arabic numbering", na ginagamit pa rin natin ngayon.

Nagbago din ang mga pangalan ng mga numero. Kaya, hanggang sa ika-15 siglo, ang bilang na "dalawampu" ay itinalaga bilang "dalawang sampu" (dalawang sampu), at pagkatapos ay binawasan ito para sa mas mabilis na pagbigkas. Ang bilang na 40 hanggang ika-15 siglo ay tinawag na "apatnapu", pagkatapos ay pinalitan ito ng salitang "apatnapu", na orihinal na tumutukoy sa isang bag na naglalaman ng 40 ardilya o balat ng sable. Ang pangalang "milyon" ay lumitaw sa Italya noong 1500. Ito ay nabuo sa pamamagitan ng pagdaragdag ng augmentative suffix sa bilang na "mille" (thousand). Nang maglaon, ang pangalang ito ay dumating sa Russian.

Sa lumang (XVIII siglo) "Arithmetic" ng Magnitsky, mayroong isang talahanayan ng mga pangalan ng mga numero, na dinala sa "quadrillion" (10 ^ 24, ayon sa sistema sa pamamagitan ng 6 na numero). Perelman Ya.I. sa aklat na "Nakakaaliw na arithmetic" ay ibinigay ang mga pangalan malalaking numero noong panahong iyon, bahagyang naiiba sa ngayon: septillon (10^42), octalion (10^48), nonallion (10^54), decalion (10^60), endecalion (10^66), dodecalion (10^72) at sinasabi nito na "wala nang iba pang pangalan."

Mga paraan upang bumuo ng mga pangalan ng malalaking numero

Mayroong 2 pangunahing paraan upang pangalanan ang malalaking numero:

  • sistemang Amerikano, na ginagamit sa USA, Russia, France, Canada, Italy, Turkey, Greece, Brazil. Ang mga pangalan ng malalaking numero ay binuo nang simple: sa simula mayroong isang Latin na ordinal na numero, at ang suffix na "-million" ay idinagdag dito sa dulo. Ang pagbubukod ay ang bilang na "milyon", na siyang pangalan ng bilang isang libo (mille) at ang magnifying suffix na "-million". Ang bilang ng mga zero sa isang numero na nakasulat sa American system ay matatagpuan sa pamamagitan ng formula: 3x + 3, kung saan ang x ay isang Latin na ordinal na numero
  • sistemang Ingles pinakakaraniwan sa mundo, ginagamit ito sa Germany, Spain, Hungary, Poland, Czech Republic, Denmark, Sweden, Finland, Portugal. Ang mga pangalan ng mga numero ayon sa sistemang ito ay binuo tulad ng sumusunod: ang suffix na "-million" ay idinagdag sa Latin numeral, ang susunod na numero (1000 beses na mas malaki) ay ang parehong Latin numeral, ngunit ang suffix na "-bilyon" ay idinagdag. Ang bilang ng mga zero sa isang numero na nakasulat sa English system at nagtatapos sa suffix na “-million” ay makikita ng formula: 6x + 3, kung saan ang x ay isang Latin na ordinal na numero. Ang bilang ng mga zero sa mga numerong nagtatapos sa suffix na “-bilyon” ay makikita ng formula: 6x + 6, kung saan ang x ay isang Latin na ordinal na numero.

Mula sa sistemang Ingles, tanging ang salitang bilyon ang pumasa sa wikang Ruso, na mas tama pa ring tawagin ito sa paraan ng pagtawag dito ng mga Amerikano - bilyon (dahil ang sistemang Amerikano para sa pagbibigay ng pangalan sa mga numero ay ginagamit sa Russian).

Bilang karagdagan sa mga numerong nakasulat sa American o English system gamit ang Latin prefix, ang mga non-systemic na numero ay kilala na may sariling mga pangalan na walang Latin prefix.

Mga wastong pangalan para sa malalaking numero

Numero Latin numeral Pangalan Praktikal na halaga
10 1 10 sampu Bilang ng mga daliri sa 2 kamay
10 2 100 isang daan Tinatayang kalahati ng bilang ng lahat ng estado sa Earth
10 3 1000 libo Tinatayang bilang ng mga araw sa loob ng 3 taon
10 6 1000 000 unus (ako) milyon 5 beses na higit sa bilang ng mga patak sa isang 10-litro. timba ng tubig
10 9 1000 000 000 dalawa(II) bilyon (bilyon) Tinatayang populasyon ng India
10 12 1000 000 000 000 tres(III) trilyon
10 15 1000 000 000 000 000 quattor(IV) quadrillion 1/30 ng haba ng parsec sa metro
10 18 quinque (V) quintillion 1/18 ng bilang ng mga butil mula sa maalamat na parangal sa imbentor ng chess
10 21 kasarian (VI) sextillion 1/6 ng masa ng planetang Earth sa tonelada
10 24 septem(VII) septillion Bilang ng mga molekula sa 37.2 litro ng hangin
10 27 octo(VIII) octillion Kalahati ng masa ng Jupiter sa kilo
10 30 nobem(IX) quintillion 1/5 ng lahat ng microorganism sa planeta
10 33 decem(X) decillion Kalahati ng masa ng Araw sa gramo
  • Vigintillion (mula sa lat. viginti - dalawampu) - 10 63
  • Centillion (mula sa Latin centum - isang daan) - 10 303
  • Milleillion (mula sa Latin na mille - thousand) - 10 3003

Para sa mga numerong higit sa isang libo, ang mga Romano ay walang sariling mga pangalan (lahat ng mga pangalan ng mga numero sa ibaba ay pinagsama-sama).

Mga compound na pangalan para sa malalaking numero

Bilang karagdagan sa kanilang sariling mga pangalan, para sa mga numerong higit sa 10 33 maaari kang makakuha ng mga tambalang pangalan sa pamamagitan ng pagsasama-sama ng mga prefix.

Mga compound na pangalan para sa malalaking numero

Numero Latin numeral Pangalan Praktikal na halaga
10 36 undecim (XI) andecillion
10 39 duodecim(XII) duodecillion
10 42 tredecim(XIII) tredecillion 1/100 ng bilang ng mga molekula ng hangin sa Earth
10 45 quattuordecim (XIV) quattordecillion
10 48 quindecim (XV) quindecillion
10 51 sedecim (XVI) sexdecillion
10 54 septendecim (XVII) septemdecillion
10 57 octodecillion Napakaraming elementong particle sa araw
10 60 novemdecillion
10 63 viginti (XX) viintillion
10 66 unus et viginti (XXI) anvigintillion
10 69 duo et viginti (XXII) duovigintillion
10 72 tres et viginti (XXIII) trevigintillion
10 75 quattorvigintillion
10 78 quinvigintillion
10 81 sexvigintillion Napakaraming elementarya na particle sa uniberso
10 84 septemvigintillion
10 87 octovigintillion
10 90 novemvigintillion
10 93 triginta (XXX) trigintillion
10 96 antirigintillion
  • 10 123 - quadragintillion
  • 10 153 - quinquagintillion
  • 10 183 - sexagintillion
  • 10 213 - septuagintillion
  • 10 243 - octogintillion
  • 10 273 - nonagintillion
  • 10 303 - sentilyon

Ang karagdagang mga pangalan ay maaaring makuha sa pamamagitan ng direkta o baligtad na pagkakasunud-sunod ng mga Latin na numero (hindi alam kung paano tama):

  • 10 306 - ancentillion o centunillion
  • 10 309 - duocentillion o centduollion
  • 10 312 - trecentillion o centtrillion
  • 10 315 - quattorcentillion o centquadrillion
  • 10 402 - tretrigintacentillion o centtretrigintillion

Ang pangalawang pagbabaybay ay higit na naaayon sa pagbuo ng mga numeral sa Latin at iniiwasan ang mga kalabuan (halimbawa, sa bilang na trecentillion, na sa unang pagbabaybay ay parehong 10903 at 10312).

  • 10 603 - decentillion
  • 10 903 - trecentillion
  • 10 1203 - quadringentillion
  • 10 1503 - quingentillion
  • 10 1803 - sescentillion
  • 10 2103 - septingentillion
  • 10 2403 - octingentillion
  • 10 2703 - nongentillion
  • 10 3003 - milyon
  • 10 6003 - duomillion
  • 10 9003 - tremillion
  • 10 15003 - quinquemillion
  • 10 308760 -ion
  • 10 3000003 - miamimiliaillion
  • 10 6000003 - duomyamimiliaillion

napakarami– 10,000. Ang pangalan ay hindi na ginagamit at halos hindi na ginagamit. Gayunpaman, ang salitang "myriad" ay malawakang ginagamit, na nangangahulugang hindi isang tiyak na numero, ngunit isang hindi mabilang, hindi mabilang na hanay ng isang bagay.

googol ( Ingles . googol) — 10 100 . Ang American mathematician na si Edward Kasner ay unang sumulat tungkol sa numerong ito noong 1938 sa journal na Scripta Mathematica sa artikulong "New Names in Mathematics". Ayon sa kanya, iminungkahi ng kanyang 9 na taong gulang na pamangkin na si Milton Sirotta na tawagan ang numero sa ganitong paraan. Ang numerong ito ay naging kaalaman ng publiko salamat sa Google search engine, na ipinangalan sa kanya.

Asankheyya(mula sa Chinese asentzi - hindi mabilang) - 10 1 4 0. Ang numerong ito ay matatagpuan sa sikat na Buddhist treatise na Jaina Sutra (100 BC). Ito ay pinaniniwalaan na ang bilang na ito ay katumbas ng bilang ng mga cosmic cycle na kinakailangan upang makakuha ng nirvana.

Googolplex ( Ingles . Googolplex) — 10^10^100. Ang numerong ito ay naimbento rin ni Edward Kasner at ng kanyang pamangkin, ibig sabihin ay isa na may googol na mga zero.

Numero ng skewes (Numero ng Skewes Ang Sk 1) ay nangangahulugang e sa kapangyarihan ng e sa kapangyarihan ng e sa kapangyarihan ng 79, ibig sabihin, e^e^e^79. Ang bilang na ito ay iminungkahi ni Skewes noong 1933 (Skewes. J. London Math. Soc. 8, 277-283, 1933.) sa pagpapatunay ng haka-haka ni Riemann tungkol sa mga pangunahing numero. Nang maglaon, binawasan ni Riele (te Riele, H. J. J. "On the Sign of the Difference P(x)-Li(x"). Math. Comput. 48, 323-328, 1987) ang numero ni Skuse sa e^e^27/4, na tinatayang katumbas ng 8.185 10^370. Gayunpaman, ang numerong ito ay hindi isang integer, kaya hindi ito kasama sa talahanayan ng malalaking numero.

Pangalawang Skewes Number (Sk2) katumbas ng 10^10^10^10^3, na 10^10^10^1000. Ang numerong ito ay ipinakilala ni J. Skuse sa parehong artikulo upang tukuyin ang bilang kung saan wasto ang Riemann hypothesis.

Para sa napakalaking numero, hindi maginhawang gumamit ng mga kapangyarihan, kaya maraming paraan upang magsulat ng mga numero - ang mga notasyon ng Knuth, Conway, Steinhouse, atbp.

Iminungkahi ni Hugo Steinhaus ang pagsulat ng malalaking numero sa loob ng mga geometric na hugis (tatsulok, parisukat at bilog).

Ang mathematician na si Leo Moser ay nagtapos sa notasyon ni Steinhaus, na nagmumungkahi na pagkatapos ng mga parisukat, hindi gumuhit ng mga bilog, ngunit mga pentagon, pagkatapos ay mga heksagono, at iba pa. Iminungkahi din ni Moser ang isang pormal na notasyon para sa mga polygon na ito, upang maisulat ang mga numero nang hindi gumuhit ng mga kumplikadong pattern.

Ang Steinhouse ay nakabuo ng dalawang bagong napakalaking numero: Mega at Megiston. Sa Moser notation, ang mga ito ay isinulat tulad ng sumusunod: Mega – 2, Megiston– 10. Iminungkahi ni Leo Moser na tawagan din ang isang polygon na may bilang ng mga panig na katumbas ng mega – megagon, at iminungkahi din ang numerong "2 sa Megagon" - 2. Ang huling numero ay kilala bilang Numero ni Moser o kaya lang Moser.

Mayroong mga numero na mas malaki kaysa kay Moser. Ang pinakamalaking bilang na ginamit sa isang mathematical proof ay numero Graham(Numero ni Graham). Ito ay unang ginamit noong 1977 sa patunay ng isang pagtatantya sa teorya ng Ramsey. Ang numerong ito ay nauugnay sa bichromatic hypercubes at hindi maaaring ipahayag nang walang espesyal na 64-level na sistema ng espesyal na mga simbolo ng matematika ipinakilala ni Knuth noong 1976. Si Donald Knuth (na sumulat ng The Art of Programming at lumikha ng editor ng TeX) ay dumating sa konsepto ng superpower, na iminungkahi niyang isulat gamit ang mga arrow na nakaturo:

Sa pangkalahatan

Iminungkahi ni Graham ang mga G-number:

Ang numerong G 63 ay tinatawag na numero ng Graham, kadalasang simpleng tinutukoy bilang G. Ang numerong ito ay ang pinakamalaking kilalang numero sa mundo at nakalista sa Guinness Book of Records.

Bata palang ako, pinahirapan ako ng tanong, ano ang pinaka malaking numero, at halos lahat ay sinalot ko sa hangal na tanong na ito. Nang malaman ko ang bilang na isang milyon, tinanong ko kung mayroong isang numero na higit sa isang milyon. Bilyon? At higit sa isang bilyon? trilyon? At higit sa isang trilyon? Sa wakas, may isang matalino na nagpaliwanag sa akin na ang tanong ay hangal, dahil sapat na upang magdagdag lamang ng isa sa pinakamalaking bilang, at ito ay lumalabas na hindi pa ito naging pinakamalaki, dahil may mas malalaking numero.

At ngayon, pagkatapos ng maraming taon, nagpasya akong magtanong ng isa pang tanong, katulad: Ano ang pinakamalaking bilang na may sariling pangalan? Sa kabutihang palad, ngayon ay may Internet at maaari mong palaisipan ang mga ito sa mga pasyente na search engine na hindi tatawagin ang aking mga tanong na idiotic ;-). Sa totoo lang, ito ang ginawa ko, at narito ang nalaman ko bilang isang resulta.

Numero Latin na pangalan prefix ng Ruso
1 unus en-
2 dalawa duo-
3 tres tatlo-
4 quattuor quadri-
5 quinque quinti-
6 kasarian sexy
7 Setyembre septi-
8 octo octi-
9 novem noni-
10 decem magpasya

Mayroong dalawang sistema para sa pagbibigay ng pangalan sa mga numero - Amerikano at Ingles.

Ang sistemang Amerikano ay binuo nang simple. Ang lahat ng mga pangalan ng malalaking numero ay binuo tulad nito: sa simula ay mayroong isang Latin na ordinal na numero, at sa dulo ang suffix -million ay idinagdag dito. Ang pagbubukod ay ang pangalang "milyon" na siyang pangalan ng bilang isang libo (lat. mille) at ang magnifying suffix -million (tingnan ang talahanayan). Kaya ang mga numero ay nakuha - trilyon, quadrillion, quintillion, sextillion, septillion, octillion, nonillion at decillion. Ang sistemang Amerikano ay ginagamit sa USA, Canada, France at Russia. Maaari mong malaman ang bilang ng mga zero sa isang numerong nakasulat sa American system gamit ang simpleng formula na 3 x + 3 (kung saan ang x ay Latin numeral).

Ang sistema ng pagpapangalan sa Ingles ay ang pinakakaraniwan sa mundo. Ginagamit ito, halimbawa, sa Great Britain at Spain, gayundin sa karamihan ng mga dating kolonya ng Ingles at Espanyol. Ang mga pangalan ng mga numero sa sistemang ito ay binuo tulad nito: tulad nito: isang suffix -million ay idinagdag sa Latin numeral, ang susunod na numero (1000 beses na mas malaki) ay binuo ayon sa prinsipyo - ang parehong Latin numeral, ngunit ang suffix ay - bilyon. Iyon ay, pagkatapos ng isang trilyon sa sistema ng Ingles ay darating ang isang trilyon, at pagkatapos lamang ng isang quadrillion, na sinusundan ng isang quadrillion, at iba pa. Kaya, ang isang quadrillion ayon sa mga sistemang Ingles at Amerikano ay ganap na magkaibang mga numero! Malalaman mo ang bilang ng mga zero sa isang numerong nakasulat sa English system at nagtatapos sa suffix -million gamit ang formula 6 x + 3 (kung saan ang x ay Latin numeral) at gamit ang formula na 6 x + 6 para sa mga numerong nagtatapos sa -bilyon.

Tanging ang bilang na bilyon (10 9) lamang ang lumipas mula sa sistemang Ingles patungo sa wikang Ruso, na, gayunpaman, ay mas tamang tawagin ito sa paraan ng pagtawag dito ng mga Amerikano - isang bilyon, dahil pinagtibay natin ang sistemang Amerikano. Ngunit sino sa ating bansa ang gumagawa ng isang bagay ayon sa mga patakaran! ;-) Siya nga pala, minsan ang salitang trilliard ay ginagamit din sa Russian (makikita mo mismo sa pamamagitan ng paghahanap sa Google o Yandex) at nangangahulugan ito, tila, 1000 trilyon, i.e. quadrillion.

Bilang karagdagan sa mga numerong isinulat gamit ang mga Latin na prefix sa American o English system, ang tinatawag na mga off-system na numero ay kilala rin, i.e. mga numerong may sariling mga pangalan nang walang anumang Latin prefix. Mayroong ilang mga naturang numero, ngunit pag-uusapan ko ang mga ito nang mas detalyado sa ibang pagkakataon.

Bumalik tayo sa pagsulat gamit ang Latin numerals. Mukhang maaari silang sumulat ng mga numero hanggang sa kawalang-hanggan, ngunit hindi ito ganap na totoo. Ngayon ipapaliwanag ko kung bakit. Una, tingnan natin kung paano tinatawag ang mga numero mula 1 hanggang 10 33:

Pangalan Numero
Yunit 10 0
Sampu 10 1
Isang daan 10 2
libo 10 3
milyon 10 6
Bilyon 10 9
Trilyon 10 12
quadrillion 10 15
Quintillion 10 18
Sextillion 10 21
Septillion 10 24
Octillion 10 27
Quintillion 10 30
Decillion 10 33

At kaya, ngayon ang tanong ay lumitaw, kung ano ang susunod. Ano ang isang decillion? Sa prinsipyo, posible, siyempre, sa pamamagitan ng pagsasama-sama ng mga prefix upang makabuo ng mga halimaw gaya ng: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion at novemdecillion, ngunit ang mga ito ay magiging mga compound na pangalan, at kami ay interesado sa ating sariling mga numero ng pangalan. Samakatuwid, ayon sa sistemang ito, bilang karagdagan sa itaas, maaari ka pa ring makakuha ng tatlong tamang pangalan - vigintillion (mula sa lat. viginti- dalawampu't), sentilyon (mula sa lat. porsyento- isang daan) at isang milyon (mula sa lat. mille- libo). Ang mga Romano ay walang higit sa isang libong wastong pangalan para sa mga numero (lahat ng mga numero na higit sa isang libo ay pinagsama-sama). Halimbawa, isang milyon (1,000,000) Romano ang tumawag centena milia ibig sabihin, sampung daang libo. At ngayon, sa totoo lang, ang talahanayan:

Kaya, ayon sa isang katulad na sistema, ang mga numerong higit sa 10 3003, na magkakaroon ng sarili nitong, hindi-compound na pangalan, ay hindi makukuha! Ngunit gayunpaman, ang mga numerong higit sa isang milyon ay kilala - ang mga ito ay parehong mga numero sa labas ng system. Sa wakas, pag-usapan natin sila.

Pangalan Numero
napakarami 10 4
googol 10 100
Asankheyya 10 140
Googolplex 10 10 100
Pangalawang numero ni Skuse 10 10 10 1000
Mega 2 (sa Moser notation)
Megiston 10 (sa Moser notation)
Moser 2 (sa Moser notation)
Numero ng Graham G 63 (sa notasyon ni Graham)
Stasplex G 100 (sa notasyon ni Graham)

Ang pinakamaliit na bilang ay napakarami(ito ay nasa diksyunaryo pa ni Dahl), na nangangahulugang isang daang daan, iyon ay, 10,000. Totoo, ang salitang ito ay lipas na at halos hindi na ginagamit, ngunit nakakapagtaka na ang salitang "myriad" ay malawakang ginagamit, na nangangahulugang hindi tiyak. bilang sa lahat, ngunit isang hindi mabilang, hindi mabilang na bilang ng mga bagay. Ito ay pinaniniwalaan na ang salitang myriad (English myriad) ay dumating sa mga wikang European mula sa sinaunang Egypt.

googol(mula sa English na googol) ay ang bilang na sampu hanggang sa ika-daang kapangyarihan, iyon ay, isa na may isang daang zero. Ang "googol" ay unang isinulat noong 1938 sa artikulong "Mga Bagong Pangalan sa Matematika" sa isyu ng Enero ng journal na Scripta Mathematica ng Amerikanong matematiko na si Edward Kasner. Ayon sa kanya, iminungkahi ng kanyang siyam na taong gulang na pamangkin na si Milton Sirotta na tawagan ang isang malaking bilang ng "googol". Ang numerong ito ay naging kilala salamat sa search engine na ipinangalan sa kanya. Google. Tandaan na ang "Google" ay trademark, at ang googol ay isang numero.

Sa sikat na Buddhist treatise na Jaina Sutra, na itinayo noong 100 BC, mayroong isang numero asankhiya(mula sa Chinese asentzi- hindi makalkula), katumbas ng 10 140. Ito ay pinaniniwalaan na ang bilang na ito ay katumbas ng bilang ng mga cosmic cycle na kinakailangan upang makakuha ng nirvana.

Googolplex(Ingles) googolplex) - isang numero na naimbento din ni Kasner kasama ang kanyang pamangkin at nangangahulugang isa na may googol ng mga zero, iyon ay, 10 10 100. Narito kung paano inilarawan mismo ni Kasner ang "pagtuklas" na ito:

Ang mga salita ng karunungan ay binibigkas ng mga bata kahit kasingdalas ng mga siyentipiko. Ang pangalang "googol" ay naimbento ng isang bata (siyam na taong gulang na pamangkin ni Dr. Kasner) na hiniling na mag-isip ng isang pangalan para sa isang napakalaking numero, ibig sabihin, 1 na may isang daang zero pagkatapos nito. Siya ay napaka tiyak na ang bilang na ito ay hindi walang hanggan, at samakatuwid ay pantay na tiyak na kailangan itong magkaroon ng isang pangalan. isang googol, ngunit may hangganan pa rin, gaya ng mabilis na itinuro ng imbentor ng pangalan.

Matematika at ang Imahinasyon(1940) nina Kasner at James R. Newman.

Kahit na higit pa sa isang numero ng googolplex, ang numero ni Skewes ay iminungkahi ni Skewes noong 1933 (Skewes. J. London Math. soc. 8 , 277-283, 1933.) sa pagpapatunay ng haka-haka ni Riemann tungkol sa mga primes. Ibig sabihin e hanggang sa e hanggang sa e sa kapangyarihan ng 79, iyon ay, e e e 79. Nang maglaon, si Riele (te Riele, H. J. J. "Sa Tanda ng Pagkakaiba P(x)-Li(x)." Math. Comput. 48 , 323-328, 1987) binawasan ang numero ng Skewes sa e e 27/4 , na tinatayang katumbas ng 8.185 10 370 . Ito ay malinaw na dahil ang halaga ng numero ng Skewes ay nakasalalay sa numero e, kung gayon ito ay hindi isang integer, kaya hindi namin ito isasaalang-alang, kung hindi, kailangan naming alalahanin ang iba pang hindi natural na mga numero - ang numerong pi, ang numero e, ang numero ng Avogadro, atbp.

Ngunit dapat tandaan na mayroong pangalawang numero ng Skewes, na sa matematika ay tinutukoy bilang Sk 2, na mas malaki pa kaysa sa unang numero ng Skewes (Sk 1). Pangalawang numero ni Skuse, ay ipinakilala ni J. Skuse sa parehong artikulo upang tukuyin ang bilang kung saan wasto ang Riemann hypothesis. Ang Sk 2 ay katumbas ng 10 10 10 10 3 , iyon ay 10 10 10 1000 .

Tulad ng naiintindihan mo, mas maraming degree ang mayroon, mas mahirap maunawaan kung alin sa mga numero ang mas malaki. Halimbawa, ang pagtingin sa mga numero ng Skewes, nang walang mga espesyal na kalkulasyon, halos imposibleng maunawaan kung alin sa dalawang numerong ito ang mas malaki. Kaya, para sa napakalaking bilang, nagiging hindi komportable na gumamit ng mga kapangyarihan. Bukod dito, maaari kang makabuo ng mga naturang numero (at naimbento na sila) kapag ang mga degree ng degree ay hindi magkasya sa pahina. Oo, anong pahina! Ni hindi sila magkakasya sa isang aklat na kasing laki ng buong uniberso! Sa kasong ito, ang tanong ay lumitaw kung paano isulat ang mga ito. Ang problema, tulad ng naiintindihan mo, ay malulutas, at ang mga mathematician ay nakabuo ng ilang mga prinsipyo para sa pagsusulat ng mga naturang numero. Totoo, ang bawat matematiko na nagtanong sa problemang ito ay may sariling paraan ng pagsulat, na humantong sa pagkakaroon ng maraming, hindi nauugnay, mga paraan upang magsulat ng mga numero - ito ang mga notasyon ng Knuth, Conway, Steinhouse, atbp.

Isaalang-alang ang notasyon ni Hugo Stenhaus (H. Steinhaus. Mga Snapshot ng Matematika, 3rd edn. 1983), na medyo simple. Iminungkahi ni Steinhouse na magsulat ng malalaking numero sa loob ng mga geometric na hugis - isang tatsulok, isang parisukat at isang bilog:

Nakaisip si Steinhouse ng dalawang bagong napakalaking numero. Pinangalanan niya ang isang numero Mega, at ang numero ay Megiston.

Ang mathematician na si Leo Moser ay pinino ang notasyon ni Stenhouse, na limitado sa katotohanan na kung kinakailangan na magsulat ng mga numero na mas malaki kaysa sa isang megiston, ang mga paghihirap at abala ay lumitaw, dahil maraming mga bilog ang kailangang iguguhit sa loob ng isa. Iminungkahi ni Moser na huwag gumuhit ng mga bilog pagkatapos ng mga parisukat, ngunit mga pentagon, pagkatapos ay mga hexagon, at iba pa. Iminungkahi din niya ang isang pormal na notasyon para sa mga polygon na ito, upang ang mga numero ay maisulat nang hindi gumuhit ng mga kumplikadong pattern. Mukhang ganito ang notasyon ng Moser:

Kaya, ayon sa notasyon ni Moser, ang mega ni Steinhouse ay isinulat bilang 2, at megiston bilang 10. Bilang karagdagan, iminungkahi ni Leo Moser na tumawag sa isang polygon na may bilang ng mga panig na katumbas ng mega - megagon. At iminungkahi niya ang numerong "2 sa Megagon", iyon ay, 2. Ang numerong ito ay nakilala bilang numero ng Moser o simpleng bilang moser.

Ngunit ang moser ay hindi ang pinakamalaking bilang. Ang pinakamalaking bilang na ginamit sa isang mathematical proof ay ang limiting value na kilala bilang Numero ng Graham(Graham "s number), unang ginamit noong 1977 sa patunay ng isang pagtatantya sa Ramsey theory. Ito ay nauugnay sa bichromatic hypercubes at hindi maaaring ipahayag nang walang espesyal na 64-level na sistema ng mga espesyal na simbolo ng matematika na ipinakilala ni Knuth noong 1976.

Sa kasamaang palad, ang numerong nakasulat sa Knuth notation ay hindi maisasalin sa Moser notation. Samakatuwid, ang sistemang ito ay kailangan ding ipaliwanag. Sa prinsipyo, wala ring kumplikado dito. Si Donald Knuth (oo, oo, ito ang parehong Knuth na sumulat ng The Art of Programming at lumikha ng editor ng TeX) ay dumating sa konsepto ng superpower, na iminungkahi niyang isulat gamit ang mga arrow na nakaturo:

Sa pangkalahatan, ganito ang hitsura:

Sa tingin ko ay malinaw na ang lahat, kaya bumalik tayo sa numero ni Graham. Iminungkahi ni Graham ang tinatawag na G-numbers:

Nagsimulang tawagin ang numerong G 63 Numero ng Graham(ito ay madalas na tinutukoy bilang G). Ang numerong ito ang pinakamalaking kilalang numero sa mundo at nakalista pa sa Guinness Book of Records. At, dito, na ang Graham number ay mas malaki kaysa sa Moser number.

P.S. Upang magdala ng malaking pakinabang sa lahat ng sangkatauhan at maging tanyag sa loob ng maraming siglo, nagpasya akong mag-imbento at pangalanan ang pinakamalaking bilang sa aking sarili. Ang numerong ito ay tatawagan stasplex at ito ay katumbas ng bilang na G 100 . Isaulo ito, at kapag tinanong ng iyong mga anak kung ano ang pinakamalaking numero sa mundo, sabihin sa kanila na ang numerong ito ay tinatawag stasplex.

Update (4.09.2003): Salamat sa lahat para sa mga komento. Lumalabas na sa pagsulat ng teksto, nakagawa ako ng ilang mga pagkakamali. Susubukan kong ayusin ngayon.

  1. Ilang beses akong nagkamali, binanggit ko lang ang numero ni Avogadro. Una, itinuro sa akin ng ilang tao na ang 6.022 10 23 ang talagang pinaka-natural na numero. At pangalawa, mayroong isang opinyon, at tila totoo sa akin, na ang numero ni Avogadro ay hindi isang numero sa wasto, matematikal na kahulugan ng salita, dahil ito ay nakasalalay sa sistema ng mga yunit. Ngayon ito ay ipinahayag sa "mol -1", ngunit kung ito ay ipinahayag, halimbawa, sa mga moles o iba pa, kung gayon ito ay ipahayag sa isang ganap na naiibang pigura, ngunit hindi ito titigil sa pagiging numero ni Avogadro.
  2. 10 000 - kadiliman
    100,000 - legion
    1,000,000 - leodre
    10,000,000 - Raven o Raven
    100 000 000 - deck
    Kapansin-pansin, mahal din ng mga sinaunang Slav ang malalaking numero, alam nila kung paano magbilang ng hanggang isang bilyon. Bukod dito, tinawag nilang "maliit na account" ang naturang account. Sa ilang mga manuskrito, isinasaalang-alang din ng mga may-akda ang "mahusay na bilang", na umabot sa bilang na 10 50 . Tungkol sa mga numero na higit sa 10 50 ay sinabi: "At higit pa rito upang dalhin ang isip ng tao upang maunawaan." Ang mga pangalang ginamit sa "maliit na account" ay inilipat sa "mahusay na account", ngunit may ibang kahulugan. Kaya, ang kadiliman ay nangangahulugang hindi na 10,000, kundi isang milyon, legion - ang kadiliman ng mga iyon (milyong milyon); leodrus - isang legion of legions (10 hanggang 24 degrees), pagkatapos ay sinabi - sampung leodres, isang daang leodres, ..., at, sa wakas, isang daang libong legion ng leodres (10 hanggang 47); leodr leodr (10 hanggang 48) ay tinawag na uwak at, sa wakas, isang kubyerta (10 hanggang 49).
  3. Ang paksa ng mga pambansang pangalan ng mga numero ay maaaring palawakin kung naaalala natin ang sistema ng Hapon ng pagbibigay ng pangalan sa mga numero na nakalimutan ko, na ibang-iba sa mga sistemang Ingles at Amerikano (Hindi ako gumuhit ng mga hieroglyph, kung may interesado, kung gayon sila ay):
    100-ichi
    10 1 - jyuu
    10 2 - hyaku
    103-sen
    104 - tao
    108-oku
    10 12 - chou
    10 16 - kei
    10 20 - gai
    10 24 - jyo
    10 28 - jyyo
    10 32 - kou
    10 36-kan
    10 40 - sei
    1044 - sai
    1048 - goku
    10 52 - gougasya
    10 56 - asougi
    10 60 - nayuta
    1064 - fukashigi
    10 68 - murioutaisuu
  4. Tungkol sa bilang ng Hugo Steinhaus (sa Russia, sa ilang kadahilanan, ang kanyang pangalan ay isinalin bilang Hugo Steinhaus). botev Tinitiyak na ang ideya ng pagsulat ng napakalaking mga numero sa anyo ng mga numero sa mga lupon ay hindi pagmamay-ari ng Steinhouse, ngunit kay Daniil Kharms, na, matagal na bago sa kanya, inilathala ang ideyang ito sa artikulong "Pagtaas ng Numero". Nais ko ring pasalamatan si Evgeny Sklyarevsky, ang may-akda ng pinaka-kagiliw-giliw na site sa nakakaaliw na matematika sa Internet na nagsasalita ng Ruso - Arbuz, para sa impormasyon na dumating si Steinhouse hindi lamang ng mga numerong mega at megiston, ngunit nagmungkahi din ng isa pang numero. mezzanine, na (sa kanyang notasyon) ay "circled 3".
  5. Ngayon para sa numero napakarami o myrioi. Mayroong iba't ibang mga opinyon tungkol sa pinagmulan ng numerong ito. Ang ilan ay naniniwala na ito ay nagmula sa Egypt, habang ang iba ay naniniwala na ito ay ipinanganak lamang sa sinaunang Greece. Maging na ito ay maaaring, sa katunayan, ang napakaraming bilang ay nakakuha ng katanyagan tiyak salamat sa mga Greeks. Myriad ang pangalan para sa 10,000, at walang mga pangalan para sa mga numerong higit sa sampung libo. Gayunpaman, sa tala na "Psammit" (i.e., ang calculus ng buhangin), ipinakita ni Archimedes kung paano sistematikong maaaring bumuo at magpangalan ng mga malalaking numero. Sa partikular, ang paglalagay ng 10,000 (myriad) na butil ng buhangin sa isang poppy seed, nalaman niya na sa Uniberso (isang globo na may diameter ng isang napakaraming diameter ng Earth) hindi hihigit sa 10 63 butil ng buhangin ang magkasya (sa aming notasyon) . Nakapagtataka na ang mga modernong kalkulasyon ng bilang ng mga atomo sa nakikitang uniberso ay humahantong sa bilang na 10 67 (isang napakaraming beses na higit pa). Ang mga pangalan ng mga numerong iminungkahi ni Archimedes ay ang mga sumusunod:
    1 myriad = 10 4 .
    1 di-myriad = myriad myriad = 10 8 .
    1 tri-myriad = di-myriad di-myriad = 10 16 .
    1 tetra-myriad = tatlong-myriad tatlong-myriad = 10 32 .
    atbp.

Kung may mga komento -

Ito ay kilala na isang walang katapusang bilang ng mga numero at iilan lamang ang may sariling pangalan, dahil karamihan sa mga numero ay binigyan ng mga pangalan na binubuo ng maliliit na numero. Ang pinakamalaking mga numero ay dapat ipahiwatig sa ilang paraan.

"Maikling" at "mahabang" sukat

Ang mga pangalan ng numero na ginamit ngayon ay nagsimulang makatanggap noong ikalabinlimang siglo, pagkatapos ay unang ginamit ng mga Italyano ang salitang milyon, ibig sabihin ay "malaking libo", bimillion (million squared) at trimillion (million cubed).

Ang sistemang ito ay inilarawan sa kanyang monograpiya ng Pranses Nicholas Shuquet, inirerekomenda niya ang paggamit ng mga Latin na numeral, idinagdag sa kanila ang inflection na "-million", kaya ang bimillion ay naging isang bilyon, at ang tatlong milyon ay naging isang trilyon, at iba pa.

Ngunit ayon sa iminungkahing sistema ng mga numero sa pagitan ng isang milyon at isang bilyon, tinawag niyang "isang libong milyon." Ito ay hindi kumportable upang gumana sa tulad ng isang gradation at noong 1549 ang Pranses na si Jacques Peletier pinapayuhan na tawagan ang mga numero na nasa tinukoy na agwat, muli gamit ang Latin prefix, habang nagpapakilala ng isa pang pagtatapos - "-bilyon".

Kaya 109 ay tinawag na bilyon, 1015 - bilyar, 1021 - trilyon.

Unti-unti, nagsimulang gamitin ang sistemang ito sa Europa. Ngunit ang ilang mga siyentipiko ay nalito ang mga pangalan ng mga numero, ito ay lumikha ng isang kabalintunaan kapag ang mga salitang bilyon at bilyon ay naging magkasingkahulugan. Kasunod nito, ang Estados Unidos ay lumikha ng sarili nitong kombensiyon sa pagbibigay ng pangalan para sa malalaking numero. Ayon sa kanya, ang pagbuo ng mga pangalan ay isinasagawa sa isang katulad na paraan, ngunit ang mga numero lamang ang naiiba.

Ang lumang sistema ay patuloy na ginamit sa UK, at samakatuwid ay tinawag British, bagaman ito ay orihinal na nilikha ng Pranses. Ngunit mula noong dekada ikapitumpu ng huling siglo, nagsimula na ring ilapat ng Great Britain ang sistema.

Samakatuwid, upang maiwasan ang pagkalito, ang konsepto na nilikha ng mga Amerikanong siyentipiko ay karaniwang tinatawag maikling sukat, habang ang orihinal French-British - mahabang sukat.

Ang maikling sukat ay natagpuan ang aktibong paggamit sa USA, Canada, Great Britain, Greece, Romania, at Brazil. Sa Russia, ginagamit din ito, na may isang pagkakaiba lamang - ang bilang na 109 ay tradisyonal na tinatawag na isang bilyon. Ngunit ang Pranses-British na bersyon ay ginustong sa maraming iba pang mga bansa.

Upang magtalaga ng mga numerong mas malaki kaysa sa isang decillion, nagpasya ang mga siyentipiko na pagsamahin ang ilang mga Latin prefix, kaya ang undecillion, quattordecillion at iba pa ay pinangalanan. Kung gagamitin mo Sistema ng Schuecke, pagkatapos ay ayon dito, ang mga higanteng numero ay kukuha ng mga pangalan na "vigintillion", "centillion" at "millionillion" (103003), ayon sa pagkakabanggit, ayon sa long scale, ang naturang numero ay tatanggap ng pangalan na "millionillion" (106003).

Mga numerong may natatanging pangalan

Maraming mga numero ang pinangalanan nang walang sanggunian sa iba't ibang sistema at bahagi ng mga salita. Mayroong maraming mga numerong ito, halimbawa, ito Pi", isang dosena, pati na rin ang mga numerong higit sa isang milyon.

SA Sinaunang Rus' matagal nang gumamit ng sarili nitong sistema ng numero. Daan-daang libo ang tinawag na legion, isang milyon ang tinawag na leodroms, sampu-sampung milyon ang mga uwak, daan-daang milyon ang tinawag na deck. Ito ay isang "maliit na salaysay", ngunit ang "mahusay na salaysay" ay gumamit ng parehong mga salita, ibang kahulugan lamang ang inilagay sa kanila, halimbawa, ang leodr ay maaaring nangangahulugang isang legion ng mga legion (1024), at ang isang deck ay maaaring mangahulugan ng sampung uwak (1096).

Ito ay nangyari na ang mga bata ay may mga pangalan para sa mga numero, halimbawa, ang matematiko na si Edward Kasner ay binigyan ng ideya batang Milton Sirotta, na nagmungkahi ng pagbibigay ng pangalan sa isang numero na may isang daang zero (10100) nang simple googol. Ang numerong ito ay nakatanggap ng pinakamaraming publisidad noong dekada nobenta ng ikadalawampu siglo, nang ang Google search engine ay ipinangalan sa kanya. Iminungkahi din ng batang lalaki ang pangalang "Googleplex", isang numerong may googol na mga zero.

Ngunit si Claude Shannon sa kalagitnaan ng ikadalawampu siglo, na sinusuri ang mga galaw sa isang laro ng chess, kinakalkula na mayroong 10118 sa kanila, ngayon ay "Numero ni Shannon".

Sa isang lumang gawaing Budismo "Jaina Sutras", na isinulat halos dalawampu't dalawang siglo na ang nakalilipas, ang bilang na "asankheya" (10140) ay nabanggit, na eksakto kung gaano karaming mga cosmic cycle, ayon sa mga Budista, kinakailangan upang makamit ang nirvana.

Inilarawan ni Stanley Skuse ang malalaking dami, kaya "ang unang numero ng Skewes", katumbas ng 10108.85.1033, at ang "pangalawang Skewes number" ay mas kahanga-hanga at katumbas ng 1010101000.

Mga notasyon

Siyempre, depende sa bilang ng mga degree na nakapaloob sa isang numero, nagiging problemang ayusin ito sa pagsulat, at maging sa pagbabasa, mga base ng error. ang ilang numero ay hindi magkasya sa maraming pahina, kaya ang mga mathematician ay gumawa ng mga notasyon upang makuha ang malalaking numero.

Ito ay nagkakahalaga ng pagsasaalang-alang na lahat sila ay magkakaiba, ang bawat isa ay may sariling prinsipyo ng pag-aayos. Kabilang sa mga ito, ito ay nagkakahalaga ng pagbanggit mga notasyon ni Steinghaus, Knuth.

Gayunpaman, ginamit ang pinakamalaking numero, ang Graham number Ronald Graham noong 1977 kapag gumagawa ng mga kalkulasyon sa matematika, at ang numerong ito ay G64.

“Nakikita ko ang mga kumpol ng hindi malinaw na mga numero na nakatago doon sa dilim, sa likod ng maliit na lugar ng liwanag na ibinibigay ng kandila ng isip. Nagbubulungan sila sa isa't isa; pinag-uusapan kung sino ang nakakaalam. Marahil ay hindi nila tayo gaanong nagustuhan sa paghuli sa kanilang maliliit na kapatid sa ating isipan. O baka namumuhay lang sila sa isang hindi malabo na paraan ng pamumuhay, sa labas, na lampas sa ating pagkakaintindi.''
Douglas Ray

Ipagpatuloy natin ang atin. Ngayon ay mayroon tayong mga numero...

Maaga o huli, lahat ay pinahihirapan ng tanong, ano ang pinakamalaking bilang. Ang tanong ng isang bata ay masasagot sa isang milyon. Anong susunod? Trilyon. At higit pa? Sa katunayan, ang sagot sa tanong kung ano ang pinakamalaking numero ay simple. Ito ay nagkakahalaga lamang ng pagdaragdag ng isa sa pinakamalaking bilang, dahil hindi na ito ang pinakamalaki. Ang pamamaraang ito ay maaaring ipagpatuloy nang walang katapusan.

Ngunit kung tatanungin mo ang iyong sarili: ano ang pinakamalaking bilang na umiiral, at ano ang sariling pangalan nito?

Ngayon alam na nating lahat...

Mayroong dalawang sistema para sa pagbibigay ng pangalan sa mga numero - Amerikano at Ingles.

Ang sistemang Amerikano ay binuo nang simple. Ang lahat ng mga pangalan ng malalaking numero ay binuo tulad nito: sa simula ay mayroong isang Latin na ordinal na numero, at sa dulo ang suffix -million ay idinagdag dito. Ang pagbubukod ay ang pangalang "milyon" na siyang pangalan ng bilang isang libo (lat. mille) at ang magnifying suffix -million (tingnan ang talahanayan). Kaya ang mga numero ay nakuha - trilyon, quadrillion, quintillion, sextillion, septillion, octillion, nonillion at decillion. Ang sistemang Amerikano ay ginagamit sa USA, Canada, France at Russia. Maaari mong malaman ang bilang ng mga zero sa isang numerong nakasulat sa American system gamit ang simpleng formula na 3 x + 3 (kung saan ang x ay Latin numeral).

Ang sistema ng pagpapangalan sa Ingles ay ang pinakakaraniwan sa mundo. Ginagamit ito, halimbawa, sa Great Britain at Spain, gayundin sa karamihan ng mga dating kolonya ng Ingles at Espanyol. Ang mga pangalan ng mga numero sa sistemang ito ay binuo tulad nito: tulad nito: isang suffix -million ay idinagdag sa Latin numeral, ang susunod na numero (1000 beses na mas malaki) ay binuo ayon sa prinsipyo - ang parehong Latin numeral, ngunit ang suffix ay - bilyon. Iyon ay, pagkatapos ng isang trilyon sa sistema ng Ingles ay darating ang isang trilyon, at pagkatapos lamang ng isang quadrillion, na sinusundan ng isang quadrillion, at iba pa. Kaya, ang isang quadrillion ayon sa mga sistemang Ingles at Amerikano ay ganap na magkaibang mga numero! Malalaman mo ang bilang ng mga zero sa isang numerong nakasulat sa English system at nagtatapos sa suffix -million gamit ang formula 6 x + 3 (kung saan ang x ay Latin numeral) at gamit ang formula na 6 x + 6 para sa mga numerong nagtatapos sa -bilyon.

Tanging ang bilang na bilyon (10 9 ) lamang ang dumaan mula sa sistemang Ingles patungo sa wikang Ruso, na, gayunpaman, ay mas tamang tawagin ito sa paraan ng pagtawag dito ng mga Amerikano - isang bilyon, dahil pinagtibay natin ang sistemang Amerikano. Ngunit sino sa ating bansa ang gumagawa ng isang bagay ayon sa mga patakaran! ;-) Sa pamamagitan ng paraan, kung minsan ang salitang trilyon ay ginagamit din sa Russian (makikita mo mismo sa pamamagitan ng pagpapatakbo ng paghahanap sa Google o Yandex) at nangangahulugan ito, tila, 1000 trilyon, i.e. quadrillion.

Bilang karagdagan sa mga numerong isinulat gamit ang mga Latin na prefix sa American o English system, ang tinatawag na mga off-system na numero ay kilala rin, i.e. mga numerong may sariling mga pangalan nang walang anumang Latin prefix. Mayroong ilang mga naturang numero, ngunit pag-uusapan ko ang mga ito nang mas detalyado sa ibang pagkakataon.

Bumalik tayo sa pagsulat gamit ang Latin numerals. Mukhang maaari silang sumulat ng mga numero hanggang sa kawalang-hanggan, ngunit hindi ito ganap na totoo. Ngayon ipapaliwanag ko kung bakit. Tingnan muna natin kung paano tinawag ang mga numero mula 1 hanggang 10 33:

At kaya, ngayon ang tanong ay lumitaw, kung ano ang susunod. Ano ang isang decillion? Sa prinsipyo, posible, siyempre, sa pamamagitan ng pagsasama-sama ng mga prefix upang makabuo ng mga halimaw gaya ng: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion at novemdecillion, ngunit ang mga ito ay magiging mga compound na pangalan, at kami ay interesado sa ating sariling mga numero ng pangalan. Samakatuwid, ayon sa sistemang ito, bilang karagdagan sa mga ipinahiwatig sa itaas, maaari ka pa ring makakuha ng tatlo lamang - vigintillion (mula sa lat.viginti- dalawampu't), sentilyon (mula sa lat.porsyento- isang daan) at isang milyon (mula sa lat.mille- libo). Ang mga Romano ay walang higit sa isang libong wastong pangalan para sa mga numero (lahat ng mga numero na higit sa isang libo ay pinagsama-sama). Halimbawa, isang milyon (1,000,000) Romano ang tumawagcentena miliaibig sabihin, sampung daang libo. At ngayon, sa totoo lang, ang talahanayan:

Kaya, ayon sa isang katulad na sistema, ang mga numero ay higit sa 10 3003 , na magkakaroon ng sarili nitong, hindi pinagsamang pangalan, imposibleng makuha! Ngunit gayunpaman, ang mga numerong higit sa isang milyon ay kilala - ito ang mga hindi sistematikong numero. Sa wakas, pag-usapan natin sila.


Ang pinakamaliit na bilang ay isang napakaraming bilang (ito ay nasa diksyunaryo ni Dahl), na nangangahulugang isang daang daan, iyon ay, 10,000. Totoo, ang salitang ito ay lipas na at halos hindi na ginagamit, ngunit nakakagulat na ang salitang "myriad" ay malawakang ginagamit, na hindi nangangahulugang isang tiyak na numero, ngunit isang hindi mabilang, hindi mabilang na hanay ng isang bagay. Ito ay pinaniniwalaan na ang salitang myriad (English myriad) ay dumating sa mga wikang European mula sa sinaunang Egypt.

Mayroong iba't ibang mga opinyon tungkol sa pinagmulan ng numerong ito. Ang ilan ay naniniwala na ito ay nagmula sa Egypt, habang ang iba ay naniniwala na ito ay ipinanganak lamang sa sinaunang Greece. Maging na ito ay maaaring, sa katunayan, ang napakaraming bilang ay nakakuha ng katanyagan tiyak salamat sa mga Greeks. Myriad ang pangalan para sa 10,000, at walang mga pangalan para sa mga numerong higit sa sampung libo. Gayunpaman, sa tala na "Psammit" (i.e., ang calculus ng buhangin), ipinakita ni Archimedes kung paano sistematikong maaaring bumuo at magpangalan ng mga malalaking numero. Sa partikular, ang paglalagay ng 10,000 (myriad) na butil ng buhangin sa isang poppy seed, nalaman niya na sa Uniberso (isang bola na may diameter ng isang napakaraming diameter ng Earth) ay magkasya (sa aming notasyon) ng hindi hihigit sa 10 63 butil ng buhangin. Nakakapagtataka na ang mga modernong kalkulasyon ng bilang ng mga atomo sa nakikitang uniberso ay humahantong sa bilang na 10 67 (isang napakaraming beses lamang). Ang mga pangalan ng mga numerong iminungkahi ni Archimedes ay ang mga sumusunod:
1 myriad = 10 4 .
1 di-myriad = myriad myriad = 10 8 .
1 tri-myriad = di-myriad di-myriad = 10 16 .
1 tetra-myriad = tatlong-myriad tatlong-myriad = 10 32 .
atbp.



Ang Googol (mula sa Ingles na googol) ay ang bilang na sampu hanggang sa ika-isang daang kapangyarihan, iyon ay, isa na may isang daang zero. Ang "googol" ay unang isinulat noong 1938 sa artikulong "Mga Bagong Pangalan sa Matematika" sa isyu ng Enero ng journal na Scripta Mathematica ng Amerikanong matematiko na si Edward Kasner. Ayon sa kanya, iminungkahi ng kanyang siyam na taong gulang na pamangkin na si Milton Sirotta na tawagan ang isang malaking bilang ng "googol". Ang numerong ito ay naging kilala salamat sa search engine na ipinangalan sa kanya. Google. Tandaan na ang "Google" ay isang trademark at ang googol ay isang numero.


Edward Kasner.

Sa Internet, madalas mong mahahanap ang pagbanggit na - ngunit hindi ito ganoon ...

Sa kilalang Buddhist treatise na Jaina Sutra, mula noong 100 BC, ang bilang na Asankheya (mula sa Chinese. asentzi- hindi makalkula), katumbas ng 10 140. Ito ay pinaniniwalaan na ang bilang na ito ay katumbas ng bilang ng mga cosmic cycle na kinakailangan upang makakuha ng nirvana.


Googolplex (Ingles) googolplex) - isang numero na naimbento din ni Kasner kasama ang kanyang pamangkin at nangangahulugang isa na may googol ng mga zero, iyon ay, 10 10100 . Narito kung paano inilarawan mismo ni Kasner ang "pagtuklas" na ito:


Ang mga salita ng karunungan ay binibigkas ng mga bata kahit kasingdalas ng mga siyentipiko. Ang pangalang "googol" ay naimbento ng isang bata (siyam na taong gulang na pamangkin ni Dr. Kasner) na hiniling na mag-isip ng isang pangalan para sa isang napakalaking numero, ibig sabihin, 1 na may isang daang zero pagkatapos nito. Siya ay napaka tiyak na ang bilang na ito ay hindi walang hanggan, at samakatuwid ay pantay na tiyak na kailangan itong magkaroon ng isang pangalan. isang googol, ngunit may hangganan pa rin, gaya ng mabilis na itinuro ng imbentor ng pangalan.

Matematika at ang Imahinasyon(1940) nina Kasner at James R. Newman.

Kahit na mas malaki kaysa sa numero ng googolplex, ang numero ng Skewes ay iminungkahi ni Skewes noong 1933 (Skewes. J. London Math. soc. 8, 277-283, 1933.) sa pagpapatunay ng haka-haka ni Riemann tungkol sa mga prime number. Ibig sabihin e hanggang sa e hanggang sa e sa kapangyarihan ng 79, ibig sabihin, ee e 79 . Nang maglaon, si Riele (te Riele, H. J. J. "Sa Tanda ng Pagkakaiba P(x)-Li(x)." Math. Comput. 48, 323-328, 1987) binawasan ang numero ni Skuse sa ee 27/4 , na tinatayang katumbas ng 8.185 10 370 . Ito ay malinaw na dahil ang halaga ng numero ng Skewes ay nakasalalay sa numero e, kung gayon ito ay hindi isang integer, kaya hindi namin ito isasaalang-alang, kung hindi, kailangan nating alalahanin ang iba pang hindi natural na mga numero - ang numerong pi, ang numero e, atbp.


Ngunit dapat tandaan na mayroong pangalawang numero ng Skewes, na sa matematika ay tinutukoy bilang Sk2 , na mas malaki pa kaysa sa unang numero ng Skewes (Sk1). Pangalawang numero ni Skuse, ay ipinakilala ni J. Skuse sa parehong artikulo upang tukuyin ang isang numero kung saan ang Riemann hypothesis ay hindi wasto. Ang Sk2 ay 1010 10103 , ibig sabihin, 1010 101000 .

Tulad ng naiintindihan mo, mas maraming degree ang mayroon, mas mahirap maunawaan kung alin sa mga numero ang mas malaki. Halimbawa, ang pagtingin sa mga numero ng Skewes, nang walang mga espesyal na kalkulasyon, halos imposibleng maunawaan kung alin sa dalawang numerong ito ang mas malaki. Kaya, para sa napakalaking bilang, nagiging hindi komportable na gumamit ng mga kapangyarihan. Bukod dito, maaari kang makabuo ng mga naturang numero (at naimbento na sila) kapag ang mga degree ng degree ay hindi magkasya sa pahina. Oo, anong pahina! Ni hindi sila magkakasya sa isang aklat na kasing laki ng buong uniberso! Sa kasong ito, ang tanong ay lumitaw kung paano isulat ang mga ito. Ang problema, tulad ng naiintindihan mo, ay malulutas, at ang mga mathematician ay nakabuo ng ilang mga prinsipyo para sa pagsusulat ng mga naturang numero. Totoo, ang bawat matematiko na nagtanong sa problemang ito ay may sariling paraan ng pagsulat, na humantong sa pagkakaroon ng maraming, hindi nauugnay, mga paraan upang magsulat ng mga numero - ito ang mga notasyon ng Knuth, Conway, Steinhaus, atbp.

Isaalang-alang ang notasyon ni Hugo Stenhaus (H. Steinhaus. Mga Snapshot ng Matematika, 3rd edn. 1983), na medyo simple. Iminungkahi ni Steinhouse na magsulat ng malalaking numero sa loob ng mga geometric na hugis - isang tatsulok, isang parisukat at isang bilog:

Nakaisip si Steinhouse ng dalawang bagong napakalaking numero. Tinawag niya ang numero - Mega, at ang numero - Megiston.

Ang mathematician na si Leo Moser ay pinino ang notasyon ni Stenhouse, na limitado sa katotohanan na kung kinakailangan na magsulat ng mga numero na mas malaki kaysa sa isang megiston, ang mga paghihirap at abala ay lumitaw, dahil maraming mga bilog ang kailangang iguguhit sa loob ng isa. Iminungkahi ni Moser na huwag gumuhit ng mga bilog pagkatapos ng mga parisukat, ngunit mga pentagon, pagkatapos ay mga hexagon, at iba pa. Iminungkahi din niya ang isang pormal na notasyon para sa mga polygon na ito, upang ang mga numero ay maisulat nang hindi gumuhit ng mga kumplikadong pattern. Mukhang ganito ang notasyon ng Moser:

Kaya, ayon sa notasyon ni Moser, ang mega ni Steinhouse ay isinulat bilang 2, at megiston bilang 10. Bilang karagdagan, iminungkahi ni Leo Moser na tumawag sa isang polygon na may bilang ng mga panig na katumbas ng mega - megagon. At iminungkahi niya ang numerong "2 sa Megagon", ibig sabihin, 2. Ang numerong ito ay nakilala bilang numero ni Moser o bilang moser.


Ngunit ang moser ay hindi ang pinakamalaking bilang. Ang pinakamalaking bilang na ginamit sa isang mathematical proof ay ang limiting value na kilala bilang Graham's number, na unang ginamit noong 1977 sa patunay ng isang pagtatantya sa Ramsey theory. Ito ay nauugnay sa bichromatic hypercubes at hindi maaaring ipahayag nang walang espesyal na 64-level na sistema ng mga espesyal na simbolo ng matematika na ipinakilala ni Knuth noong 1976.

Sa kasamaang palad, ang numerong nakasulat sa Knuth notation ay hindi maisasalin sa Moser notation. Samakatuwid, ang sistemang ito ay kailangan ding ipaliwanag. Sa prinsipyo, wala ring kumplikado dito. Si Donald Knuth (oo, oo, ito ang parehong Knuth na sumulat ng The Art of Programming at lumikha ng editor ng TeX) ay dumating sa konsepto ng superpower, na iminungkahi niyang isulat gamit ang mga arrow na nakaturo:

Sa pangkalahatan, ganito ang hitsura:

Sa tingin ko ay malinaw na ang lahat, kaya bumalik tayo sa numero ni Graham. Iminungkahi ni Graham ang tinatawag na G-numbers:


  1. G1 = 3..3, kung saan ang bilang ng mga superdegree na arrow ay 33.

  2. G2 = ..3, kung saan ang bilang ng mga superdegree na arrow ay katumbas ng G1 .

  3. G3 = ..3, kung saan ang bilang ng mga superdegree na arrow ay katumbas ng G2 .


  4. G63 = ..3, kung saan ang bilang ng mga superpower na arrow ay G62 .

Ang numerong G63 ay naging kilala bilang ang numero ng Graham (ito ay madalas na tinutukoy bilang G). Ang numerong ito ang pinakamalaking kilalang numero sa mundo at nakalista pa sa Guinness Book of Records. At dito

Sa mga pangalan ng Arabic na numero, ang bawat digit ay kabilang sa kategorya nito, at bawat tatlong digit ay bumubuo ng isang klase. Kaya, ang huling digit sa isang numero ay nagpapahiwatig ng bilang ng mga yunit sa loob nito at tinatawag, nang naaayon, ang lugar ng mga yunit. Ang susunod, pangalawa mula sa dulo, ang digit ay nagpapahiwatig ng sampu (ang sampung digit), at ang ikatlong digit mula sa dulo ay nagpapahiwatig ng bilang ng daan-daan sa numero - ang daan-daang digit. Dagdag pa, ang mga digit ay inuulit sa parehong paraan sa bawat klase, na nagsasaad ng mga yunit, sampu at daan-daan sa mga klase ng libo, milyon, at iba pa. Kung ang numero ay maliit at hindi naglalaman ng sampu o daan-daang digit, kaugalian na kunin ang mga ito bilang zero. Pinagpangkat-pangkat ng mga klase ang mga numero sa tatlo, kadalasan sa mga computing device o mga talaan ay naglalagay ng tuldok o espasyo sa pagitan ng mga klase upang makitang paghiwalayin ang mga ito. Ginagawa ito para mas madaling basahin ang malalaking numero. Ang bawat klase ay may sariling pangalan: ang unang tatlong digit ay ang klase ng mga yunit, na sinusundan ng klase ng libu-libo, pagkatapos ay milyon-milyon, bilyun-bilyon (o bilyun-bilyon), at iba pa.

Dahil ginagamit natin ang decimal system, ang pangunahing yunit ng dami ay ang sampu, o 10 1 . Alinsunod dito, sa pagtaas ng bilang ng mga digit sa isang numero, tumataas din ang bilang ng sampu ng 10 2, 10 3, 10 4, atbp. Alam ang bilang ng sampu, madali mong matutukoy ang klase at kategorya ng numero, halimbawa, ang 10 16 ay sampu ng quadrillions, at ang 3 × 10 16 ay tatlong sampu ng quadrillions. Ang agnas ng mga numero sa mga bahagi ng decimal ay nangyayari tulad ng sumusunod - ang bawat digit ay ipinapakita sa isang hiwalay na termino, na pinarami ng kinakailangang koepisyent na 10 n, kung saan ang n ay ang posisyon ng digit sa bilang mula kaliwa hanggang kanan.
Halimbawa: 253 981=2×10 6 +5×10 5 +3×10 4 +9×10 3 +8×10 2 +1×10 1

Gayundin, ang kapangyarihan ng 10 ay ginagamit din sa pagsulat ng mga decimal: 10 (-1) ay 0.1 o isang ikasampu. Katulad ng naunang talata, maaari ding mabulok ang isang decimal na numero, kung saan ang n ay magsasaad ng posisyon ng digit mula sa kuwit mula kanan pakaliwa, halimbawa: 0.347629= 3x10 (-1) +4x10 (-2) +7x10 (-3) +6x10 (-4) +2x10 (-5) +9x10 (-6) )

Mga pangalan ng decimal na numero. Ang mga desimal na numero ay binabasa ng huling digit pagkatapos ng decimal point, halimbawa 0.325 - tatlong daan at dalawampu't limang libo, kung saan ang thousandths ay ang digit ng huling digit na 5.

Talaan ng mga pangalan ng malalaking numero, digit at klase

1st class unit 1st unit digit
2nd place sampu
3rd rank daan-daan
1 = 10 0
10 = 10 1
100 = 10 2
2nd class thousand 1st digit na unit ng libo
2nd digit na sampu-sampung libo
3rd rank daan-daang libo
1 000 = 10 3
10 000 = 10 4
100 000 = 10 5
3rd grade milyon-milyon 1st digit na units milyon
2nd digit na sampu-sampung milyon
3rd digit na daan-daang milyon
1 000 000 = 10 6
10 000 000 = 10 7
100 000 000 = 10 8
4th grade billions 1st digit units bilyon
2nd digit na sampu-sampung bilyon
3rd digit na daan-daang bilyon
1 000 000 000 = 10 9
10 000 000 000 = 10 10
100 000 000 000 = 10 11
5th grade trilyon 1st digit na trilyong unit
2nd digit na sampu-sampung trilyon
3rd digit na daang trilyon
1 000 000 000 000 = 10 12
10 000 000 000 000 = 10 13
100 000 000 000 000 = 10 14
Ika-6 na baitang quadrillions 1st digit na quadrillion unit
2nd digit na sampu ng quadrillions
3rd digit na sampu ng quadrillions
1 000 000 000 000 000 = 10 15
10 000 000 000 000 000 = 10 16
100 000 000 000 000 000 = 10 17
7th grade quintillions 1st digit na unit ng quintillions
2nd digit na sampu ng quintillions
3rd rank hundred quintillion
1 000 000 000 000 000 000 = 10 18
10 000 000 000 000 000 000 = 10 19
100 000 000 000 000 000 000 = 10 20
8th grade sextillions 1st digit na sextillion unit
2nd digit na sampu ng sextillions
Ika-3 ranggo daang sextillions
1 000 000 000 000 000 000 000 = 10 21
10 000 000 000 000 000 000 000 = 10 22
1 00 000 000 000 000 000 000 000 = 10 23
ika-9 na baitang septillion 1st digit units ng septillion
2nd digit na sampu ng septillions
3rd rank hundred septillion
1 000 000 000 000 000 000 000 000 = 10 24
10 000 000 000 000 000 000 000 000 = 10 25
100 000 000 000 000 000 000 000 000 = 10 26
10th class octillion 1st digit octillion units
2nd digit na ten octillion
3rd rank hundred octillion
1 000 000 000 000 000 000 000 000 000 = 10 27
10 000 000 000 000 000 000 000 000 000 = 10 28
100 000 000 000 000 000 000 000 000 000 = 10 29