What is a 13 digit number called? A million, a billion, a trillion, a trillion, and what’s next, ad infinitum. Russia's housing stock and four football fields as examples

Many people are interested in questions about what large numbers are called and what number is the largest in the world. With these interesting questions and we will look into this in this article.

Story

The southern and eastern Slavic peoples used alphabetical numbering to record numbers, and only those letters that are in the Greek alphabet. A special “title” icon was placed above the letter that designated the number. The numerical values ​​of the letters increased in the same order as the letters in the Greek alphabet (in the Slavic alphabet the order of the letters was slightly different). In Russia, Slavic numbering was preserved until the end of the 17th century, and under Peter I they switched to “Arabic numbering,” which we still use today.

The names of the numbers also changed. Thus, until the 15th century, the number “twenty” was designated as “two tens” (two tens), and then it was shortened for faster pronunciation. The number 40 was called “fourty” until the 15th century, then it was replaced by the word “forty,” which originally meant a bag containing 40 squirrel or sable skins. The name “million” appeared in Italy in 1500. It was formed by adding an augmentative suffix to the number “mille” (thousand). Later this name came to the Russian language.

In the ancient (18th century) “Arithmetic” of Magnitsky, a table of the names of numbers is given, brought to the “quadrillion” (10^24, according to the system through 6 digits). Perelman Ya.I. the book “Entertaining Arithmetic” gives the names of large numbers of that time, slightly different from today: septillion (10^42), octalion (10^48), nonalion (10^54), decalion (10^60), endecalion (10^ 66), dodecalion (10^72) and it is written that “there are no further names.”

Ways to construct names for large numbers

There are 2 main ways to name large numbers:

  • American system, which is used in the USA, Russia, France, Canada, Italy, Turkey, Greece, Brazil. The names of large numbers are constructed quite simply: the Latin ordinal number comes first, and the suffix “-million” is added to it at the end. An exception is the number “million,” which is the name of the number thousand (mille) and the augmentative suffix “-million.” The number of zeros in a number, which is written according to the American system, can be found out by the formula: 3x+3, where x is the Latin ordinal number
  • English system most common in the world, it is used in Germany, Spain, Hungary, Poland, Czech Republic, Denmark, Sweden, Finland, Portugal. The names of numbers according to this system are constructed as follows: the suffix “-million” is added to the Latin numeral, the next number (1000 times larger) is the same Latin numeral, but the suffix “-billion” is added. The number of zeros in a number, which is written according to the English system and ends with the suffix “-million,” can be found out by the formula: 6x+3, where x is the Latin ordinal number. The number of zeros in numbers ending with the suffix “-billion” can be found using the formula: 6x+6, where x is the Latin ordinal number.

Only the word billion passed from the English system into the Russian language, which is still more correctly called as the Americans call it - billion (since the Russian language uses the American system for naming numbers).

In addition to numbers that are written according to the American or English system using Latin prefixes, non-system numbers are known that have their own names without Latin prefixes.

Proper names for large numbers

Number Latin numeral Name Practical significance
10 1 10 ten Number of fingers on 2 hands
10 2 100 one hundred About half the number of all states on Earth
10 3 1000 thousand Approximate number of days in 3 years
10 6 1000 000 unus (I) million 5 times more than the number of drops per 10 liter. bucket of water
10 9 1000 000 000 duo (II) billion (billion) Estimated Population of India
10 12 1000 000 000 000 tres (III) trillion
10 15 1000 000 000 000 000 quattor (IV) quadrillion 1/30 of the length of a parsec in meters
10 18 quinque (V) quintillion 1/18th of the number of grains from the legendary award to the inventor of chess
10 21 sex (VI) sextillion 1/6 of the mass of planet Earth in tons
10 24 septem (VII) septillion Number of molecules in 37.2 liters of air
10 27 octo (VIII) octillion Half of Jupiter's mass in kilograms
10 30 novem (IX) quintillion 1/5 of all microorganisms on the planet
10 33 decem (X) decillion Half the mass of the Sun in grams
  • Vigintillion (from Latin viginti - twenty) - 10 63
  • Centillion (from Latin centum - one hundred) - 10,303
  • Million (from Latin mille - thousand) - 10 3003

For numbers greater than a thousand, the Romans did not have their own names (all names for numbers were then composite).

Compound names of large numbers

In addition to proper names, for numbers greater than 10 33 you can obtain compound names by combining prefixes.

Compound names of large numbers

Number Latin numeral Name Practical significance
10 36 undecim (XI) andecillion
10 39 duodecim (XII) duodecillion
10 42 tredecim (XIII) thredecillion 1/100 of the number of air molecules on Earth
10 45 quattuordecim (XIV) quattordecillion
10 48 quindecim (XV) quindecillion
10 51 sedecim (XVI) sexdecillion
10 54 septendecim (XVII) septemdecillion
10 57 octodecillion So many elementary particles on the Sun
10 60 novemdecillion
10 63 viginti (XX) vigintillion
10 66 unus et viginti (XXI) anvigintillion
10 69 duo et viginti (XXII) duovigintillion
10 72 tres et viginti (XXIII) trevigintillion
10 75 quattorvigintillion
10 78 quinvigintillion
10 81 sexvigintillion So many elementary particles in the universe
10 84 septemvigintillion
10 87 octovigintillion
10 90 novemvigintillion
10 93 triginta (XXX) trigintillion
10 96 antigintillion
  • 10 123 - quadragintillion
  • 10 153 — quinquagintillion
  • 10 183 — sexagintillion
  • 10,213 - septuagintillion
  • 10,243 — octogintillion
  • 10,273 — nonagintillion
  • 10 303 - centillion

Further names can be obtained by direct or reverse order of Latin numerals (which is correct is not known):

  • 10 306 - ancentillion or centunillion
  • 10 309 - duocentillion or centullion
  • 10 312 - trcentillion or centtrillion
  • 10 315 - quattorcentillion or centquadrillion
  • 10 402 - tretrigyntacentillion or centretrigintillion

The second spelling is more consistent with the construction of numerals in the Latin language and allows us to avoid ambiguities (for example, in the number trecentillion, which according to the first spelling is both 10,903 and 10,312).

  • 10 603 - decentillion
  • 10,903 - trcentillion
  • 10 1203 - quadringentillion
  • 10 1503 — quingentillion
  • 10 1803 - sescentillion
  • 10 2103 - septingentillion
  • 10 2403 — octingentillion
  • 10 2703 — nongentillion
  • 10 3003 - million
  • 10 6003 - duo-million
  • 10 9003 - three million
  • 10 15003 — quinquemilliallion
  • 10 308760 -ion
  • 10 3000003 — mimiliaillion
  • 10 6000003 — duomimiliaillion

Myriad– 10,000. The name is outdated and practically not used. However, the word “myriads” is widely used, which does not mean a specific number, but an innumerable, uncountable number of something.

Googol ( English . googol) — 10 100. The American mathematician Edward Kasner first wrote about this number in 1938 in the journal Scripta Mathematica in the article “New Names in Mathematics.” According to him, his 9-year-old nephew Milton Sirotta suggested calling the number this way. This number became publicly known thanks to the Google search engine named after it.

Asankheya(from Chinese asentsi - uncountable) - 10 1 4 0 . This number is found in the famous Buddhist treatise Jaina Sutra (100 BC). It is believed that this number is equal to the number of cosmic cycles required to achieve nirvana.

Googolplex ( English . Googolplex) — 10^10^100. This number was also invented by Edward Kasner and his nephew; it means one followed by a googol of zeros.

Skewes number (Skewes' number, Sk 1) means e to the power of e to the power of e to the power of 79, that is, e^e^e^79. This number was proposed by Skewes in 1933 (Skewes. J. London Math. Soc. 8, 277-283, 1933.) when proving the Riemann hypothesis concerning prime numbers. Later, Riele (te Riele, H. J. J. “On the Sign of the Difference П(x)-Li(x).” Math. Comput. 48, 323-328, 1987) reduced the Skuse number to e^e^27/4, which is approximately equal to 8.185·10^370. However, this number is not an integer, so it is not included in the table of large numbers.

Second Skewes number (Sk2) equals 10^10^10^10^3, that is, 10^10^10^1000. This number was introduced by J. Skuse in the same article to indicate the number up to which the Riemann hypothesis is valid.

For super-large numbers it is inconvenient to use powers, so there are several ways to write numbers - Knuth, Conway, Steinhouse notations, etc.

Hugo Steinhouse proposed writing large numbers inside geometric shapes (triangle, square and circle).

Mathematician Leo Moser refined Steinhouse's notation, proposing to draw pentagons, then hexagons, etc. after squares rather than circles. Moser also proposed a formal notation for these polygons so that the numbers could be written without drawing complex pictures.

Steinhouse came up with two new super-large numbers: Mega and Megiston. In Moser notation they are written as follows: Mega – 2, Megiston– 10. Leo Moser also proposed to call a polygon with the number of sides equal to mega – megagon, and also proposed the number “2 in Megagon” - 2. The last number is known as Moser's number or just like Moser.

There are numbers larger than Moser. The largest number that has been used in a mathematical proof is number Graham(Graham's number). It was first used in 1977 to prove an estimate in Ramsey theory. This number is associated with bichromatic hypercubes and cannot be expressed without a special 64-level system of special mathematical symbols, introduced by Knuth in 1976. Donald Knuth (who wrote “The Art of Programming” and created the TeX editor) came up with the concept of superpower, which he proposed to write with arrows pointing up:

In general

Graham proposed G-numbers:

The number G 63 is called Graham's number, often denoted simply G. This number is the largest known number in the world and is listed in the Guinness Book of Records.

In everyday life, most people operate with fairly small numbers. Tens, hundreds, thousands, very rarely - millions, almost never - billions. A person’s usual idea of ​​quantity or magnitude is limited to approximately these numbers. Almost everyone has heard about trillions, but few have ever used them in any calculations.

What are they, giant numbers?

Meanwhile, numbers denoting powers of a thousand have been known to people for a long time. In Russia and many other countries, a simple and logical notation system is used:

Thousand;
Million;
Billion;
Trillion;
Quadrillion;
Quintillion;
Sextillion;
Septillion;
Octillion;
Quintillion;
Decillion.

In this system, each subsequent number is obtained by multiplying the previous one by a thousand. Billion is usually called billion.

Many adults can accurately write numbers such as a million - 1,000,000 and a billion - 1,000,000,000. A trillion is more difficult, but almost everyone can handle it - 1,000,000,000,000. And then begins territory unknown to many.

Let's take a closer look at the big numbers

However, there is nothing complicated, the main thing is to understand the system of formation of large numbers and the principle of naming. As already mentioned, each subsequent number is a thousand times greater than the previous one. This means that in order to correctly write the next number in ascending order, you need to add three more zeros to the previous one. That is, a million has 6 zeros, a billion has 9, a trillion has 12, a quadrillion has 15, and a quintillion has 18.

You can also figure out the names if you wish. The word "million" comes from the Latin "mille", which means "more than a thousand." The following numbers were formed by adding the Latin words "bi" (two), "tri" (three), "quad" (four), etc.

Now let's try to visualize these numbers clearly. Most people have a pretty good idea of ​​the difference between a thousand and a million. Everyone understands that a million rubles is good, but a billion is more. Much more. Also, everyone has the idea that a trillion is something absolutely immense. But how much of a trillion more than a billion? How big is it?

For many, beyond a billion the concept of “incomprehensible to the mind” begins. Indeed, a billion kilometers or a trillion - the difference is not very big in the sense that such a distance still cannot be covered in a lifetime. A billion rubles or a trillion is also not very different, because you still can’t earn that kind of money in your entire life. But let's do a little math using our imagination.

Russia's housing stock and four football fields as examples

For every person on earth there is a land area measuring 100x200 meters. That's about four football fields. But if there are not 7 billion people, but seven trillion, then everyone will only get a piece of land 4x5 meters. Four football fields versus the area of ​​the front garden in front of the entrance - this is the ratio of a billion to a trillion.

In absolute terms, the picture is also impressive.

If you take a trillion bricks, you can build more than 30 million one-story houses with an area of ​​100 square meters. That is, about 3 billion square meters of private development. This is comparable to the total housing stock of the Russian Federation.

If you build ten-story buildings, you will get approximately 2.5 million houses, that is, 100 million two- and three-room apartments, about 7 billion square meters of housing. This is 2.5 times more than the entire housing stock in Russia.

In a word, there are not a trillion bricks in all of Russia.

One quadrillion student notebooks will cover the entire territory of Russia with a double layer. And one quintillion of the same notebooks will cover the entire landmass with a layer 40 centimeters thick. If we manage to get a sextillion notebooks, then the entire planet, including the oceans, will be under a layer 100 meters thick.

Let's count to a decillion

Let's count some more. For example, a matchbox magnified a thousand times would be the size of a sixteen-story building. An increase of a million times will give a “box” that is larger in area than St. Petersburg. Enlarged a billion times, the boxes would not fit on our planet. On the contrary, the Earth will fit into such a “box” 25 times!

Increasing the box gives an increase in its volume. It will be almost impossible to imagine such volumes with further increase. For ease of perception, let's try to increase not the object itself, but its quantity, and arrange the matchboxes in space. This will make it easier to navigate. A quintillion boxes laid out in one row would stretch beyond the star α Centauri by 9 trillion kilometers.

Another thousandfold magnification (sextillion) would allow matchboxes lined up to span the entire length of our Milky Way galaxy. A septillion matchboxes would stretch over 50 quintillion kilometers. Light can travel such a distance in 5 million 260 thousand years. And the boxes laid out in two rows would stretch to the Andromeda galaxy.

There are only three numbers left: octillion, nonillion and decillion. You'll have to use your imagination. An octillion boxes form a continuous line of 50 sextillion kilometers. This is more than five billion light years. Not every telescope installed on one edge of such an object could see its opposite edge.

Shall we count further? A nonillion matchboxes would fill the entire space of the known part of the Universe with an average density of 6 pieces per cubic meter. By earthly standards, it doesn’t seem like a lot - 36 matchboxes in the back of a standard Gazelle. But a nonillion matchboxes would have a mass billions of times greater than the mass of all the material objects in the known Universe combined.

Decillion. The size, or rather even the majesty, of this giant from the world of numbers is difficult to imagine. Just one example - six decillion boxes would no longer fit in the entire part of the Universe accessible to humanity for observation.

The majesty of this number is even more striking if you do not multiply the number of boxes, but increase the object itself. A matchbox, magnified a decillion times, would contain the entire part of the Universe known to mankind 20 trillion times. It’s impossible to even imagine this.

Small calculations showed how huge the numbers are, known to mankind for several centuries. In modern mathematics, numbers many times greater than a decillion are known, but they are used only in complex mathematical calculations. Only professional mathematicians have to deal with such numbers.

The most famous (and smallest) of these numbers is the googol, denoted by one followed by one hundred zeros. A googol is greater than the total number of elementary particles in the visible part of the Universe. This makes googol an abstract number that has little practical use.

As a child, I was tormented by the question of what the largest number exists, and I tormented almost everyone with this stupid question. Having learned the number one million, I asked if there was a number greater than a million. Billion? How about more than a billion? Trillion? How about more than a trillion? Finally, there was someone smart who explained to me that the question was stupid, since it is enough just to add one to the largest number, and it turns out that it was never the largest, since there are even larger numbers.

And so, many years later, I decided to ask myself another question, namely: What is the largest number that has its own name? Fortunately, now there is the Internet and you can puzzle patient search engines with it, which will not call my questions idiotic ;-). Actually, that’s what I did, and this is what I found out as a result.

Number Latin name Russian prefix
1 unus an-
2 duo duo-
3 tres three-
4 quattuor quadri-
5 quinque quinti-
6 sex sexty
7 septem septi-
8 octo octi-
9 novem noni-
10 decem deci-

There are two systems for naming numbers - American and English.

The American system is built quite simply. All names of large numbers are constructed like this: at the beginning there is a Latin ordinal number, and at the end the suffix -million is added to it. An exception is the name "million" which is the name of the number thousand (lat. mille) and the magnifying suffix -illion (see table). This is how we get the numbers trillion, quadrillion, quintillion, sextillion, septillion, octillion, nonillion and decillion. The American system is used in the USA, Canada, France and Russia. You can find out the number of zeros in a number written according to the American system using the simple formula 3 x + 3 (where x is a Latin numeral).

The English naming system is the most common in the world. It is used, for example, in Great Britain and Spain, as well as in most former English and Spanish colonies. The names of numbers in this system are built like this: like this: the suffix -million is added to the Latin numeral, the next number (1000 times larger) is built according to the principle - the same Latin numeral, but the suffix - billion. That is, after a trillion in the English system there is a trillion, and only then a quadrillion, followed by a quadrillion, etc. Thus, a quadrillion according to the English and American systems are completely different numbers! You can find out the number of zeros in a number written according to the English system and ending with the suffix -million, using the formula 6 x + 3 (where x is a Latin numeral) and using the formula 6 x + 6 for numbers ending in - billion.

Only the number billion (10 9) passed from the English system into the Russian language, which would still be more correct to be called as the Americans call it - billion, since we have adopted the American system. But who in our country does anything according to the rules! ;-) By the way, sometimes the word trillion is used in Russian (you can see this for yourself by running a search in Google or Yandex) and it means, apparently, 1000 trillion, i.e. quadrillion.

In addition to numbers written using Latin prefixes according to the American or English system, so-called non-system numbers are also known, i.e. numbers that have their own names without any Latin prefixes. There are several such numbers, but I will tell you more about them a little later.

Let's return to writing using Latin numerals. It would seem that they can write down numbers to infinity, but this is not entirely true. Now I will explain why. Let's first see what the numbers from 1 to 10 33 are called:

Name Number
Unit 10 0
Ten 10 1
One hundred 10 2
Thousand 10 3
Million 10 6
Billion 10 9
Trillion 10 12
Quadrillion 10 15
Quintillion 10 18
Sextillion 10 21
Septillion 10 24
Octillion 10 27
Quintillion 10 30
Decillion 10 33

And now the question arises, what next. What's behind the decillion? In principle, it is, of course, possible, by combining prefixes, to generate such monsters as: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion and novemdecillion, but these will already be compound names, and we were interested in our own names numbers. Therefore, according to this system, in addition to those indicated above, you can still get only three proper names - vigintillion (from Lat. viginti- twenty), centillion (from lat. centum- one hundred) and million (from lat. mille- thousand). The Romans did not have more than a thousand proper names for numbers (all numbers over a thousand were composite). For example, the Romans called a million (1,000,000) decies centena milia, that is, "ten hundred thousand." And now, actually, the table:

Thus, according to such a system, it is impossible to obtain numbers greater than 10 3003, which would have its own, non-compound name! But nevertheless, numbers greater than a million are known - these are the same non-systemic numbers. Let's finally talk about them.

Name Number
Myriad 10 4
Google 10 100
Asankheya 10 140
Googolplex 10 10 100
Second Skewes number 10 10 10 1000
Mega 2 (in Moser notation)
Megiston 10 (in Moser notation)
Moser 2 (in Moser notation)
Graham number G 63 (in Graham notation)
Stasplex G 100 (in Graham notation)

The smallest such number is myriad(it is even in Dahl’s dictionary), which means a hundred hundreds, that is, 10,000. This word, however, is outdated and practically not used, but it is curious that the word “myriads” is widely used, which does not mean a specific number at all, but countless, uncountable multitudes of something. It is believed that the word myriad came into European languages ​​from ancient Egypt.

Google(from the English googol) is the number ten to the hundredth power, that is, one followed by one hundred zeros. The “googol” was first written about in 1938 in the article “New Names in Mathematics” in the January issue of the journal Scripta Mathematica by the American mathematician Edward Kasner. According to him, it was his nine-year-old nephew Milton Sirotta who suggested calling the large number a “googol”. This number became generally known thanks to the search engine named after it. Google. Please note that "Google" is trademark, and googol is a number.

In the famous Buddhist treatise Jaina Sutra, dating back to 100 BC, the number appears asankheya(from China asenzi- uncountable), equal to 10 140. It is believed that this number is equal to the number of cosmic cycles required to achieve nirvana.

Googolplex(English) googolplex) - a number also invented by Kasner and his nephew and meaning one with a googol of zeros, that is, 10 10 100. This is how Kasner himself describes this “discovery”:

Words of wisdom are spoken by children at least as often as by scientists. The name "googol" was invented by a child (Dr. Kasner's nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. At the same time that he suggested "googol" he gave a name for a still larger number: "Googolplex." A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out.

Mathematics and the Imagination(1940) by Kasner and James R. Newman.

An even larger number than the googolplex, the Skewes number, was proposed by Skewes in 1933. J. London Math. Soc. 8 , 277-283, 1933.) in proving the Riemann hypothesis concerning prime numbers. It means e to a degree e to a degree e to the power of 79, that is, e e e 79. Later, te Riele, H. J. J. "On the Sign of the Difference P(x)-Li(x)." Math. Comput. 48 , 323-328, 1987) reduced the Skuse number to e e 27/4, which is approximately equal to 8.185 10 370. It is clear that since the value of the Skuse number depends on the number e, then it is not an integer, so we will not consider it, otherwise we would have to remember other non-natural numbers - pi, e, Avogadro's number, etc.

But it should be noted that there is a second Skuse number, which in mathematics is denoted as Sk 2, which is even greater than the first Skuse number (Sk 1). Second Skewes number, was introduced by J. Skuse in the same article to denote the number up to which the Riemann hypothesis is valid. Sk 2 is equal to 10 10 10 10 3, that is, 10 10 10 1000.

As you understand, the more degrees there are, the more difficult it is to understand which number is greater. For example, looking at Skewes numbers, without special calculations, it is almost impossible to understand which of these two numbers is larger. Thus, for super-large numbers it becomes inconvenient to use powers. Moreover, you can come up with such numbers (and they have already been invented) when the degrees of degrees simply do not fit on the page. Yes, that's on the page! They won’t fit even into a book the size of the entire Universe! In this case, the question arises of how to write them down. The problem, as you understand, is solvable, and mathematicians have developed several principles for writing such numbers. True, every mathematician who wondered about this problem came up with his own way of writing, which led to the existence of several, unrelated to each other, methods for writing numbers - these are the notations of Knuth, Conway, Steinhouse, etc.

Consider the notation of Hugo Stenhouse (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), which is quite simple. Stein House suggested writing large numbers inside geometric shapes - triangle, square and circle:

Steinhouse came up with two new superlarge numbers. He named the number - Mega, and the number is Megiston.

Mathematician Leo Moser refined Stenhouse's notation, which was limited by the fact that if it was necessary to write down numbers much larger than a megiston, difficulties and inconveniences arose, since many circles had to be drawn one inside the other. Moser suggested that after the squares, draw not circles, but pentagons, then hexagons, and so on. He also proposed a formal notation for these polygons so that numbers could be written without drawing complex pictures. Moser notation looks like this:

Thus, according to Moser's notation, Steinhouse's mega is written as 2, and megiston as 10. In addition, Leo Moser proposed calling a polygon with the number of sides equal to mega - megagon. And he proposed the number “2 in Megagon”, that is, 2. This number became known as Moser’s number or simply as moser.

But Moser is not the largest number. The largest number ever used in mathematical proof is the limit known as Graham number(Graham's number), first used in 1977 in the proof of one estimate in Ramsey theory. It is associated with bichromatic hypercubes and cannot be expressed without a special 64-level system of special mathematical symbols introduced by Knuth in 1976.

Unfortunately, a number written in Knuth's notation cannot be converted into notation in the Moser system. Therefore, we will have to explain this system too. In principle, there is nothing complicated about it either. Donald Knuth (yes, yes, this is the same Knuth who wrote “The Art of Programming” and created the TeX editor) came up with the concept of superpower, which he proposed to write with arrows pointing upward:

In general it looks like this:

I think everything is clear, so let’s return to Graham’s number. Graham proposed so-called G-numbers:

The number G 63 began to be called Graham number(it is often designated simply as G). This number is the largest known number in the world and is even listed in the Guinness Book of Records. Well, the Graham number is greater than the Moser number.

P.S. In order to bring great benefit to all humanity and become famous throughout the centuries, I decided to come up with and name the largest number myself. This number will be called stasplex and it is equal to the number G 100. Remember it, and when your children ask what is the largest number in the world, tell them that this number is called stasplex.

Update (4.09.2003): Thank you all for the comments. It turned out that I made several mistakes when writing the text. I'll try to fix it now.

  1. I made several mistakes just by mentioning Avogadro's number. First, several people pointed out to me that 6.022 10 23 is, in fact, the most natural number. And secondly, there is an opinion, and it seems correct to me, that Avogadro’s number is not a number at all in the proper, mathematical sense of the word, since it depends on the system of units. Now it is expressed in “mol -1”, but if it is expressed, for example, in moles or something else, then it will be expressed as a completely different number, but this will not cease to be Avogadro’s number at all.
  2. 10,000 - darkness
    100,000 - legion
    1,000,000 - leodr
    10,000,000 - raven or corvid
    100,000,000 - deck
    Interestingly, the ancient Slavs also loved large numbers and were able to count to a billion. Moreover, they called such an account a “small account.” In some manuscripts, the authors also considered the “great count”, reaching the number 10 50. About numbers greater than 10 50 it was said: “And more than this cannot be understood by the human mind.” The names used in the “small count” were transferred to the “great count”, but with a different meaning. So, darkness no longer meant 10,000, but a million, legion - the darkness of those (a million millions); leodre - legion of legions (10 to the 24th degree), then it was said - ten leodres, one hundred leodres, ..., and finally, one hundred thousand those legion of leodres (10 to 47); leodr leodrov (10 in 48) was called a raven and, finally, a deck (10 in 49).
  3. The topic of national names of numbers can be expanded if we remember about the Japanese system of naming numbers that I had forgotten, which is very different from the English and American systems (I won’t draw hieroglyphs, if anyone is interested, they are):
    10 0 - ichi
    10 1 - jyuu
    10 2 - hyaku
    10 3 - sen
    10 4 - man
    10 8 - oku
    10 12 - chou
    10 16 - kei
    10 20 - gai
    10 24 - jyo
    10 28 - jyou
    10 32 - kou
    10 36 - kan
    10 40 - sei
    10 44 - sai
    10 48 - goku
    10 52 - gougasya
    10 56 - asougi
    10 60 - nayuta
    10 64 - fukashigi
    10 68 - muryoutaisuu
  4. Regarding the numbers of Hugo Steinhaus (in Russia for some reason his name was translated as Hugo Steinhaus). botev assures that the idea of ​​writing superlarge numbers in the form of numbers in circles belongs not to Steinhouse, but to Daniil Kharms, who long before him published this idea in the article “Raising a Number.” I also want to thank Evgeniy Sklyarevsky, the author of the most interesting site on entertaining mathematics on the Russian-language Internet - Arbuza, for the information that Steinhouse came up with not only the numbers mega and megiston, but also suggested another number medical zone, equal (in his notation) to "3 in a circle".
  5. Now about the number myriad or mirioi. There are different opinions about the origin of this number. Some believe that it originated in Egypt, while others believe that it was born only in Ancient Greece. Be that as it may in fact, the myriad gained fame precisely thanks to the Greeks. Myriad was the name for 10,000, but there were no names for numbers greater than ten thousand. However, in his note “Psammit” (i.e., calculus of sand), Archimedes showed how to systematically construct and name arbitrarily large numbers. In particular, placing 10,000 (myriad) grains of sand in a poppy seed, he finds that in the Universe (a ball with a diameter of a myriad of the diameters of the Earth) no more than 10 63 grains of sand could fit (in our notation). It is curious that modern calculations of the number of atoms in the visible Universe lead to the number 10 67 (in total a myriad of times more). Archimedes suggested the following names for the numbers:
    1 myriad = 10 4 .
    1 di-myriad = myriad of myriads = 10 8 .
    1 tri-myriad = di-myriad di-myriad = 10 16 .
    1 tetra-myriad = three-myriad three-myriad = 10 32 .
    etc.

If you have any comments -

I once read a tragic story about a Chukchi who was taught by polar explorers to count and write down numbers. The magic of numbers amazed him so much that he decided to write down absolutely all the numbers in the world in a row, starting with one, in a notebook donated by polar explorers. The Chukchi abandons all his affairs, stops communicating even with his own wife, no longer hunts ringed seals and seals, but keeps writing and writing numbers in a notebook…. This is how a year goes by. In the end, the notebook runs out and the Chukchi realizes that he was able to write down only a small part of all the numbers. He weeps bitterly and in despair burns his scribbled notebook in order to again begin to live the simple life of a fisherman, no longer thinking about the mysterious infinity of numbers...

Let's not repeat the feat of this Chukchi and try to find the largest number, since any number only needs to add one to get an even larger number. Let us ask ourselves a similar but different question: which of the numbers that have their own name is the largest?

It is obvious that although the numbers themselves are infinite, they do not have so many proper names, since most of them are content with names made up of smaller numbers. So, for example, the numbers 1 and 100 have their own names “one” and “one hundred,” and the name of the number 101 is already compound (“one hundred and one”). It is clear that in the finite set of numbers that humanity has awarded own name, there must be some largest number. But what is it called and what does it equal? Let's try to figure this out and find, in the end, this is the largest number!

Number

Latin cardinal number

Russian prefix


"Short" and "long" scale

Story modern system The names of large numbers date back to the middle of the 15th century, when in Italy they began to use the words “million” (literally - large thousand) for a thousand squared, “bimillion” for a million squared and “trimillion” for a million cubed. We know about this system thanks to the French mathematician Nicolas Chuquet (c. 1450 - c. 1500): in his treatise “The Science of Numbers” (Triparty en la science des nombres, 1484) he developed this idea, proposing to further use the Latin cardinal numbers (see table), adding them to the ending “-million”. So, “bimillion” for Schuke turned into a billion, “trimillion” became a trillion, and a million to the fourth power became “quadrillion”.

In the Schuquet system, the number 10 9, located between a million and a billion, did not have its own name and was simply called “a thousand millions”, similarly 10 15 was called “a thousand billions”, 10 21 - “a thousand trillion”, etc. This was not very convenient, and in 1549 French writer and the scientist Jacques Peletier du Mans (1517-1582) proposed naming such “intermediate” numbers using the same Latin prefixes, but with the ending “-billion”. Thus, 10 9 began to be called “billion”, 10 15 - “billiard”, 10 21 - “trillion”, etc.

The Chuquet-Peletier system gradually became popular and was used throughout Europe. However, in the 17th century an unexpected problem arose. It turned out that for some reason some scientists began to get confused and call the number 10 9 not “billion” or “thousand millions”, but “billion”. Soon this error quickly spread, and a paradoxical situation arose - “billion” became simultaneously synonymous with “billion” (10 9) and “million millions” (10 18).

This confusion continued for quite a long time and led to the fact that the United States created its own system for naming large numbers. According to the American system, the names of numbers are constructed in the same way as in the Chuquet system - the Latin prefix and the ending “million”. However, the magnitudes of these numbers are different. If in the Schuquet system names with the ending “illion” received numbers that were powers of a million, then in the American system the ending “-illion” received powers of a thousand. That is, a thousand million (1000 3 = 10 9) began to be called a “billion”, 1000 4 (10 12) - a “trillion”, 1000 5 (10 15) - a “quadrillion”, etc.

The old system of naming large numbers continued to be used in conservative Great Britain and began to be called “British” throughout the world, despite the fact that it was invented by the French Chuquet and Peletier. However, in the 1970s, the UK officially switched to the “American system”, which led to the fact that it became somehow strange to call one system American and another British. As a result, the American system is now commonly referred to as the "short scale" and the British or Chuquet-Peletier system as the "long scale".

To avoid confusion, let's summarize:

Number name

Short scale value

Long scale value

Billion

Billiards

Trillion

trillion

Quadrillion

Quadrillion

Quintillion

Quintilliard

Sextillion

Sextillion

Septillion

Septilliard

Octillion

Octilliard

Quintillion

Nonilliard

Decillion

Decilliard


The short naming scale is now used in the US, UK, Canada, Ireland, Australia, Brazil and Puerto Rico. Russia, Denmark, Turkey and Bulgaria also use a short scale, except that the number 10 9 is called "billion" rather than "billion". The long scale continues to be used in most other countries.

It is curious that in our country the final transition to a short scale occurred only in the second half of the 20th century. For example, Yakov Isidorovich Perelman (1882-1942) in his “Entertaining Arithmetic” mentions the parallel existence of two scales in the USSR. The short scale, according to Perelman, was used in everyday life and financial calculations, and the long scale was used in scientific books on astronomy and physics. However, now it is wrong to use a long scale in Russia, although the numbers there are large.

But let's return to the search for the largest number. After decillion, the names of numbers are obtained by combining prefixes. This produces numbers such as undecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion, novemdecillion, etc. However, these names are no longer interesting to us, since we agreed to find the largest number with its own non-composite name.

If we turn to Latin grammar, we will find that the Romans had only three non-compound names for numbers greater than ten: viginti - “twenty”, centum - “hundred” and mille - “thousand”. The Romans did not have their own names for numbers greater than a thousand. For example, the Romans called a million (1,000,000) “decies centena milia,” that is, “ten times a hundred thousand.” According to Chuquet's rule, these three remaining Latin numerals give us such names for numbers as "vigintillion", "centillion" and "millillion".


So, we found out that on a “short scale” maximum number, which has its own name and is not a composite of smaller numbers, is “million” (10 3003). If Russia adopted a “long scale” for naming numbers, then the largest number with its own name would be “billion” (10 6003).

However, there are names for even larger numbers.

Numbers outside the system

Some numbers have their own name, without any connection with the naming system using Latin prefixes. And there are many such numbers. You can, for example, remember the number e, number “pi”, dozen, number of the beast, etc. However, since we are now interested in large numbers, we will consider only those numbers with their own non-composite name that are greater than a million.

Until the 17th century, Rus' used its own system for naming numbers. Tens of thousands were called "darkness", hundreds of thousands were called "legions", millions were called "leoders", tens of millions were called "ravens", and hundreds of millions were called "decks". This count up to hundreds of millions was called the “small count”, and in some manuscripts the authors also considered the “great count”, in which the same names were used for large numbers, but with a different meaning. So, “darkness” no longer meant ten thousand, but a thousand thousand (10 6), “legion” - the darkness of those (10 12); “leodr” - legion of legions (10 24), “raven” - leodr of leodrov (10 48). For some reason, “deck” in the great Slavic counting was not called “raven of ravens” (10 96), but only ten “ravens”, that is, 10 49 (see table).

Number name

Meaning in "small count"

Meaning in the "great count"

Designation

Raven (corvid)


The number 10,100 also has its own name and was invented by a nine-year-old boy. And it was like this. In 1938, American mathematician Edward Kasner (1878-1955) was walking in the park with his two nephews and discussing large numbers with them. During the conversation, we talked about a number with a hundred zeros, which did not have its own name. One of the nephews, nine-year-old Milton Sirott, suggested calling this number “googol.” In 1940, Edward Kasner, together with James Newman, wrote the popular science book Mathematics and the Imagination, where he told mathematics lovers about the googol number. Googol became even more widely known in the late 1990s, thanks to the Google search engine named after it.

The name for an even larger number than googol arose in 1950 thanks to the father of computer science, Claude Elwood Shannon (1916-2001). In his article "Programming a Computer to Play Chess" he tried to estimate the number possible options chess game. According to it, each game lasts on average 40 moves and on each move the player makes a choice from an average of 30 options, which corresponds to 900 40 (approximately equal to 10,118) game options. This work became widely known, and this number became known as the “Shannon number.”

In the famous Buddhist treatise Jaina Sutra, dating back to 100 BC, the number “asankheya” is found equal to 10,140. It is believed that this number is equal to the number of cosmic cycles required to achieve nirvana.

Nine-year-old Milton Sirotta went down in the history of mathematics not only because he came up with the number googol, but also because at the same time he proposed another number - the “googolplex”, which is equal to 10 to the power of “googol”, that is, one with a googol of zeros.

Two more numbers larger than the googolplex were proposed by the South African mathematician Stanley Skewes (1899-1988) when proving the Riemann hypothesis. The first number, which later became known as the "Skuse number", is equal to e to a degree e to a degree e to the power of 79, that is e e e 79 = 10 10 8.85.10 33 . However, the “second Skewes number” is even larger and is 10 10 10 1000.

Obviously, the more powers there are in the powers, the more difficult it is to write the numbers and understand their meaning when reading. Moreover, it is possible to come up with such numbers (and, by the way, they have already been invented) when the degrees of degrees simply do not fit on the page. Yes, that's on the page! They won't even fit into a book the size of the entire Universe! In this case, the question arises of how to write such numbers. The problem, fortunately, is solvable, and mathematicians have developed several principles for writing such numbers. True, every mathematician who asked about this problem came up with his own way of writing, which led to the existence of several unrelated methods for writing large numbers - these are the notations of Knuth, Conway, Steinhaus, etc. We now have to deal with some of them.

Other notations

In 1938, the same year that nine-year-old Milton Sirotta invented the numbers googol and googolplex, a book about entertaining mathematics, A Mathematical Kaleidoscope, written by Hugo Dionizy Steinhaus (1887-1972), was published in Poland. This book became very popular, went through many editions and was translated into many languages, including English and Russian. In it, Steinhaus, discussing large numbers, offers a simple way to write them using three geometric figures - a triangle, a square and a circle:

"n in a triangle" means " n n»,
« n squared" means " n V n triangles",
« n in a circle" means " n V n squares."

Explaining this method of notation, Steinhaus comes up with the number "mega" equal to 2 in a circle and shows that it is equal to 256 in a "square" or 256 in 256 triangles. To calculate it, you need to raise 256 to the power of 256, raise the resulting number 3.2.10 616 to the power of 3.2.10 616, then raise the resulting number to the power of the resulting number, and so on, raise it to the power 256 times. For example, a calculator in MS Windows cannot calculate due to overflow of 256 even in two triangles. Approximately this huge number is 10 10 2.10 619.

Having determined the “mega” number, Steinhaus invites readers to independently estimate another number - “medzon”, equal to 3 in a circle. In another edition of the book, Steinhaus, instead of medzone, suggests estimating an even larger number - “megiston”, equal to 10 in a circle. Following Steinhaus, I also recommend that readers break away from this text for a while and try to write these numbers themselves using ordinary powers in order to feel their gigantic magnitude.

However, there are names for b O larger numbers. Thus, the Canadian mathematician Leo Moser (Leo Moser, 1921-1970) modified the Steinhaus notation, which was limited by the fact that if it were necessary to write numbers much larger than megiston, then difficulties and inconveniences would arise, since it would be necessary to draw many circles one inside another. Moser suggested that after the squares, draw not circles, but pentagons, then hexagons, and so on. He also proposed a formal notation for these polygons so that numbers could be written without drawing complex pictures. Moser notation looks like this:

« n triangle" = n n = n;
« n squared" = n = « n V n triangles" = nn;
« n in a pentagon" = n = « n V n squares" = nn;
« n V k+ 1-gon" = n[k+1] = " n V n k-gons" = n[k]n.

Thus, according to Moser’s notation, Steinhaus’s “mega” is written as 2, “medzone” as 3, and “megiston” as 10. In addition, Leo Moser proposed calling a polygon with the number of sides equal to mega - “megagon”. And he proposed the number “2 in megagon”, that is, 2. This number became known as the Moser number or simply as “Moser”.

But even “Moser” is not the largest number. So, the largest number ever used in mathematical proof is the "Graham number". This number was first used by the American mathematician Ronald Graham in 1977 when proving one estimate in Ramsey theory, namely when calculating the dimension of certain n-dimensional bichromatic hypercubes. Graham's number became famous only after it was described in Martin Gardner's 1989 book, From Penrose Mosaics to Reliable Ciphers.

To explain how large Graham's number is, we have to explain another way of writing large numbers, introduced by Donald Knuth in 1976. American professor Donald Knuth came up with the concept of superpower, which he proposed to write with arrows pointing upward:

I think everything is clear, so let’s return to Graham’s number. Ronald Graham proposed the so-called G-numbers:

The number G 64 is called the Graham number (it is often designated simply as G). This number is the largest known number in the world used in a mathematical proof, and is even listed in the Guinness Book of Records.

And finally

Having written this article, I can’t help but resist the temptation to come up with my own number. Let this number be called " stasplex"and will be equal to the number G 100. Remember it, and when your children ask what the largest number in the world is, tell them that this number is called stasplex.

Partner news

It is known that an infinite number of numbers and only a few have their own names, because most numbers received names consisting of small numbers. The largest numbers need to be designated somehow.

"Short" and "long" scale

Number names used today began to receive in the fifteenth century, then the Italians first used the word million, meaning “large thousand,” bimillion (million squared) and trimillion (million cubed).

This system was described in his monograph by the Frenchman Nicolas Chuquet, he recommended using Latin numerals, adding the inflection “-million” to them, so bimillion became billion, and three million became trillion, and so on.

But according to the proposed system, he called the numbers between a million and a billion “a thousand millions.” It was not comfortable to work with such a gradation and in 1549 by the Frenchman Jacques Peletier advised to name the numbers located in the indicated interval, again using Latin prefixes, while introducing a different ending - “-billion”.

So 109 was called billion, 1015 - billiard, 1021 - trillion.

Gradually this system began to be used in Europe. But some scientists confused the names of the numbers, this created a paradox when the words billion and billion became synonymous. Subsequently, the United States created its own procedure for naming large numbers. According to him, the construction of names is carried out in a similar way, but only the numbers differ.

The previous system continued to be used in Great Britain, which is why it was called British, although it was originally created by the French. But already in the seventies of the last century, Great Britain also began to apply the system.

Therefore, in order to avoid confusion, the concept created by American scientists is usually called short scale, while the original French-British - long scale.

The short scale has found active use in the USA, Canada, Great Britain, Greece, Romania, and Brazil. In Russia it is also used, with only one difference - the number 109 is traditionally called a billion. But the French-British version was preferred in many other countries.

In order to denote numbers larger than a decillion, scientists decided to combine several Latin prefixes, so undecillion, quattordecillion and others were named. If you use Schuke system, then, according to it, giant numbers will receive the names “vigintillion”, “centillion” and “million” (103003), respectively, according to the long scale, such a number will receive the name “billion” (106003).

Numbers with unique names

Many numbers were named without reference to various systems and parts of words. There are a lot of these numbers, for example, this Pi", a dozen, and numbers over a million.

IN Ancient Rus' its own numerical system has been used for a long time. Hundreds of thousands were designated by the word legion, a million were called leodromes, tens of millions were ravens, hundreds of millions were called a deck. This was the “small count,” but the “great count” used the same words, only they had a different meaning, for example, leodr could mean a legion of legions (1024), and a deck could mean ten ravens (1096).

It happened that children came up with names for numbers, so the mathematician Edward Kasner gave the idea young Milton Sirotta, who proposed to name the number with a hundred zeros (10100) simply "googol". This number received the greatest publicity in the nineties of the twentieth century, when the Google search engine was named in its honor. The boy also suggested the name “googloplex,” a number with a googol of zeros.

But Claude Shannon in the middle of the twentieth century, evaluating moves in a chess game, calculated that there were 10,118 of them, now this "Shannon number".

In the ancient work of Buddhists "Jaina Sutras", written almost twenty-two centuries ago, notes the number “asankheya” (10140), which is exactly how many cosmic cycles, according to Buddhists, are necessary to achieve nirvana.

Stanley Skuse described large quantities as "first Skewes number" equal to 10108.85.1033, and the “second Skewes number” is even more impressive and equals 1010101000.

Notations

Of course, depending on the number of degrees contained in a number, it becomes problematic to record it in writing, and even in reading, error databases. Some numbers cannot be contained on several pages, so mathematicians have come up with notations to capture large numbers.

It is worth considering that they are all different, each has its own principle of fixation. Among these it is worth mentioning Steinhaus and Knuth notations.

However, the largest number, the “Graham number,” was used Ronald Graham in 1977 when performing mathematical calculations, and this is the number G64.