DIY pulse charger for a car battery. Circuit diagram of a charger for a car battery - from simple to complex. From a computer power supply

I know that I’ve already gotten all sorts of different chargers, but I couldn’t help but repeat an improved copy of the thyristor charger for car batteries. Refinement of this circuit makes it possible to no longer monitor the state of charge of the battery, also provides protection against polarity reversal, and also saves the old parameters

On the left in the pink frame is a well-known circuit of a phase-pulse current regulator; you can read more about the advantages of this circuit

On the right side of the diagram is a voltage limiter car battery. The point of this modification is that when the voltage on the battery reaches 14.4V, the voltage from this part of the circuit blocks the supply of pulses to the left side of the circuit through transistor Q3 and charging is completed.

I laid out the circuit as I found it, and on the printed circuit board I slightly changed the values ​​of the divider with the trimmer

This is the printed circuit board I got in the SprintLayout project

The divider with trimmer on the board has changed, as mentioned above, and also added another resistor to switch the voltage between 14.4V-15.2V. This voltage of 15.2V is necessary for charging calcium car batteries

There are three LED indicators on the board: Power, Battery connected, Polarity reversal. I recommend putting the first two green, the third LED red. The variable resistor of the current regulator is installed on the printed circuit board, the thyristor and diode bridge are placed on the radiator.

I'll post a couple of photos of the assembled boards, but not in the case yet. There are also no tests of a charger for car batteries yet. I'll post the rest of the photos once I'm in the garage.


I also started drawing the front panel in the same application, but while I’m waiting for a parcel from China, I haven’t started working on the panel yet

I also found on the Internet a table of battery voltages at different states of charge, maybe it will be useful to someone

An article about another simple charger would be interesting.

So as not to miss Latest updates in the workshop, subscribe to updates in In contact with or Odnoklassniki, you can also subscribe to updates by e-mail in the column on the right

Don’t want to delve into the routine of radio electronics? I recommend paying attention to the proposals of our Chinese friends. For a very reasonable price you can purchase quite high-quality chargers

A simple charger with LED indicator charging, green battery is charging, red battery is charged.

There is short circuit protection and reverse polarity protection. Perfect for charging Moto batteries with a capacity of up to 20A/h; a 9A/h battery will charge in 7 hours, 20A/h in 16 hours. The price for this charger is only 403 rubles, free delivery

This type of charger is capable of automatically charging almost any type of 12V car and motorcycle batteries up to 80A/H. It has a unique charging method in three stages: 1. Constant current charging, 2. Constant voltage charging, 3. Drop charging up to 100%.
There are two indicators on the front panel, the first indicates the voltage and charging percentage, the second indicates the charging current.
Quite a high-quality device for home needs, the price is just RUR 781.96, free delivery. At the time of writing these lines number of orders 1392, grade 4.8 out of 5. When ordering, do not forget to indicate Eurofork

Charger for a wide variety of 12-24V battery types with current up to 10A and peak current 12A. Able to charge Helium batteries and SA\SA. The charging technology is the same as the previous one in three stages. The charger is capable of charging both automatically and manually. The panel has an LCD indicator indicating voltage, charging current and charging percentage.

A good device if you need to charge all possible types of batteries of any capacity, up to 150Ah

Compliance with the operating mode of rechargeable batteries, and in particular the charging mode, guarantees their trouble-free operation throughout their entire service life. Batteries are charged with a current, the value of which can be determined by the formula

where I is the average charging current, A., and Q is the nameplate electric capacity of the battery, Ah.

A classic charger for a car battery consists of a step-down transformer, a rectifier and a charging current regulator. Wire rheostats (see Fig. 1) and transistor current stabilizers are used as current regulators.

In both cases, these elements generate significant thermal power, which reduces the efficiency of the charger and increases the likelihood of its failure.

To regulate the charging current, you can use a store of capacitors connected in series with the primary (mains) winding of the transformer and acting as reactances that dampen excess network voltage. A simplified version of such a device is shown in Fig. 2.

In this circuit, thermal (active) power is released only on the diodes VD1-VD4 of the rectifier bridge and the transformer, so the heating of the device is insignificant.

The disadvantage in Fig. 2 is the need to provide a voltage on the secondary winding of the transformer one and a half times greater than the rated load voltage (~ 18÷20V).

The charger circuit, which provides charging of 12-volt batteries with a current of up to 15 A, and the charging current can be changed from 1 to 15 A in steps of 1 A, is shown in Fig. 3.

It is possible to automatically turn off the device when the battery is fully charged. It is not afraid of short-term short circuits in the load circuit and breaks in it.

Switches Q1 - Q4 can be used to connect various combinations of capacitors and thereby regulate the charging current.

The variable resistor R4 sets the response threshold of K2, which should operate when the voltage at the battery terminals is equal to the voltage of a fully charged battery.

In Fig. Figure 4 shows another charger in which the charging current is smoothly regulated from zero to the maximum value.

The change in current in the load is achieved by adjusting the opening angle of the thyristor VS1. The control unit is made on a unijunction transistor VT1. The value of this current is determined by the position of the variable resistor R5. The maximum battery charging current is 10A, set with an ammeter. The device is provided on the mains and load side with fuses F1 and F2.

A version of the charger printed circuit board (see Fig. 4), 60x75 mm in size, is shown in the following figure:

In the diagram in Fig. 4, the secondary winding of the transformer must be designed for a current three times greater than the charging current, and accordingly, the power of the transformer must also be three times greater than the power consumed by the battery.

This circumstance is a significant drawback chargers with current regulator thyristor (thyristor).

Note:

The rectifier bridge diodes VD1-VD4 and the thyristor VS1 must be installed on radiators.

It is possible to significantly reduce power losses in the SCR, and therefore increase the efficiency of the charger, by moving the control element from the circuit of the secondary winding of the transformer to the circuit of the primary winding. such a device is shown in Fig. 5.

In the diagram in Fig. 5 control unit is similar to that used in the previous version of the device. SCR VS1 is included in the diagonal of the rectifier bridge VD1 - VD4. Since the current of the primary winding of the transformer is approximately 10 times less than the charging current, relatively little thermal power is released on the diodes VD1-VD4 and the thyristor VS1 and they do not require installation on radiators. In addition, the use of an SCR in the primary winding circuit of the transformer made it possible to slightly improve the shape of the charging current curve and reduce the value of the current curve shape coefficient (which also leads to an increase in the efficiency of the charger). The disadvantage of this charger is the galvanic connection with the network of elements of the control unit, which must be taken into account when developing a design (for example, use a variable resistor with a plastic axis).

A version of the printed circuit board of the charger in Figure 5, measuring 60x75 mm, is shown in the figure below:

Note:

The rectifier bridge diodes VD5-VD8 must be installed on radiators.

In the charger in Figure 5 there is a diode bridge VD1-VD4 type KTs402 or KTs405 with the letters A, B, C. Zener diode VD3 type KS518, KS522, KS524, or made up of two identical zener diodes with a total stabilization voltage of 16÷24 volts (KS482, D808 , KS510, etc.). Transistor VT1 is unijunction, type KT117A, B, V, G. The diode bridge VD5-VD8 is made up of diodes, with a working current not less than 10 amperes(D242÷D247, etc.). The diodes are installed on radiators with an area of ​​at least 200 sq.cm, and the radiators will become very hot; a fan can be installed in the charger case for ventilation.

For those who don’t have time to “bother” with all the nuances of charging a car battery, monitoring the charging current, turning it off in time so as not to overcharge, etc., we can recommend a simple car battery charging scheme with automatic shutdown when the battery is fully charged. This circuit uses one low-power transistor to determine the voltage on the battery.

Scheme of a simple automatic car battery charger

List of required parts:

  • R1 = 4.7 kOhm;
  • P1 = 10K trimmer;
  • T1 = BC547B, KT815, KT817;
  • Relay = 12V, 400 Ohm, (can be automotive, for example: 90.3747);
  • TR1 = secondary winding voltage 13.5-14.5 V, current 1/10 of the battery capacity (for example: battery 60A/h - current 6A);
  • Diode bridge D1-D4 = for a current equal to the rated current of the transformer = at least 6A (for example D242, KD213, KD2997, KD2999...), installed on the radiator;
  • Diodes D1 (in parallel with the relay), D5.6 = 1N4007, KD105, KD522...;
  • C1 = 100uF/25V.
  • R2, R3 - 3 kOhm
  • HL1 - AL307G
  • HL2 - AL307B

The circuit lacks a charging indicator, current control (ammeter) and charging current limitation. If desired, you can put an ammeter at the output at the break of any of the wires. LEDs (HL1 and HL2) with limiting resistances (R2 and R3 - 1 kOhm) or light bulbs in parallel with C1 “mains”, and to the free contact RL1 “end of charge”.

Changed scheme

A current equal to 1/10 of the battery capacity is selected by the number of turns of the secondary winding of the transformer. When winding the transformer secondary, it is necessary to make several taps to select the optimal charging current option.

The charge of a car (12-volt) battery is considered complete when the voltage at its terminals reaches 14.4 volts.

The shutdown threshold (14.4 volts) is set by trimming resistor P1 when the battery is connected and fully charged.

When charging a discharged battery, the voltage on it will be about 13V; during charging, the current will drop and the voltage will increase. When the voltage on the battery reaches 14.4 volts, transistor T1 turns off relay RL1, the charging circuit will be broken and the battery will be disconnected from the charging voltage from diodes D1-4.

When the voltage drops to 11.4 volts, charging resumes again; this hysteresis is provided by diodes D5-6 in the emitter of the transistor. The circuit's response threshold becomes 10 + 1.4 = 11.4 volts, which can be considered to automatically restart the charging process.

This homemade simple automatic car charger will help you control the charging process, not track the end of charging and not overcharge your battery!

Website materials used: homemade-circuits.com

Another version of the charger circuit for a 12-volt car battery with automatic shutdown at the end of charging

The scheme is a little more complicated than the previous one, but with clearer operation.

Table of voltages and percentage of battery discharge not connected to the charger


SHARE WITH YOUR FRIENDS

P O P U L A R N O E:

    When you don’t have a sealant gun at hand (or it’s inconvenient to use; some people write on the Internet: “you get tired of pressing the trigger when doing a lot of work, but there’s no electric gun”), you have to figure out how to squeeze the silicone out of the tube using a handy method.

    Basic Concepts

    Nowadays, it is difficult to do without energy-saving lighting in residential premises, offices or large rooms ( shopping centers, restaurants, etc.). Today's advances in the circuitry of electronic ballasts (EPG) for various light sources have made it possible to realize the idea of ​​lighting " Smart home».

    It became possible to create lighting control systems(LMS), solving two main important tasks: increasing the comfort of lighting and saving energy.

    We can say that automated control systems are the most complete and vivid manifestation of the introduction of the achievements of modern electronics into lighting technology.

    Engine overheating indicator.

    In a car, it is very important to prevent the engine from overheating. Deviations from the norm in the car's cooling system can lead to jamming of the pistons in the engine cylinders, burning of valve heads and many other malfunctions, which will then cost expensive repairs. Of course, there is control over the temperature of the coolant in cars, but a sound alarm in case of evaporation of hot liquid and a light alarm notifying about excessive heating of the coolant would not be amiss.


    Popularity: 107,872 views

There are times, especially in winter, when car owners need to recharge their car battery from an external power source. Of course, people who do not have good electrical skills will It is advisable to buy a factory battery charger, it’s even better to purchase a starting-charger to start the engine with a discharged battery without wasting time on external recharging.

But if you have a little knowledge in the field of electronics, you can assemble a simple charger with your own hands.

general characteristics

To properly maintain the battery and extend its service life, recharging is required when the voltage at the terminals drops below 11.2 V. At this voltage, the engine will most likely start, but if parked for a long time in winter, this will lead to sulfation of the plates and, as a result, a decrease in capacity batteries. When parked for a long time in winter, it is necessary to regularly monitor the voltage at the battery terminals. It should be 12 V. It is best to remove the battery and take it to a warm place, not forgetting monitor the charge level.

The battery is charged using constant or pulsed current. When using a constant voltage power supply, the current for proper charging should be one tenth of the battery capacity. If the battery capacity is 50 Ah, then a current of 5 amperes is required for charging.

To extend the battery life, battery plate desulfation techniques are used. The battery is discharged to a voltage of less than five volts by repeated consumption of a large current of short duration. An example of such consumption is starting the starter. After this, a slow full charge is carried out with a small current within one ampere. Repeat the process 8-9 times. The desulfation method takes a long time, but according to all studies it gives good results.

It must be remembered that when charging, it is important not to overcharge the battery. The charge is carried out to a voltage of 12.7-13.3 volts and depends on the battery model. Maximum charge indicated in the documentation for the battery, which can always be found on the Internet.

Overcharging causes boiling, increases the density of the electrolyte and, as a result, the destruction of the plates. Factory charging devices have charge monitoring and subsequent shutdown systems. Assemble such systems yourself, without having sufficient knowledge in electronics, it is quite difficult.

DIY assembly diagrams

It is worth talking about simple charging devices that can be assembled with minimal knowledge in electronics, and the charge capacity can be monitored by connecting a voltmeter or an ordinary tester.

Charging circuit for emergencies

There are times when a car that has been parked overnight near the house cannot be started in the morning due to a discharged battery. There can be many reasons for this unpleasant circumstance.

If the battery was in good condition and slightly discharged, the following will help solve the problem:

Ideal as a power source laptop charger. It has an output voltage of 19 volts and a current of within two amperes, which is quite enough to complete the task. On the output connector, as a rule, the internal input is positive, the external circuit of the plug is negative.

As a limiting resistance, which is mandatory, you can use a cabin light bulb. More can be used powerful lamps, for example, from the dimensions, but this will create an extra load on the power supply, which is very undesirable.

An elementary circuit is assembled: the negative of the power supply is connected to the light bulb, the light bulb to the negative of the battery. Plus goes directly from the battery to the power supply. Within two hours the battery will receive a charge to start the engine.

From a power supply from a desktop computer

Such a device is more difficult to manufacture, but it can be assembled with minimal knowledge of electronics. The basis will be an unnecessary block from the computer system unit. The output voltages of such units are +5 and +12 volts with an output current of about two amperes. These parameters allow you to assemble a low-power charger, which, if assembled correctly will serve the owner for a long time and reliably. Fully charging the battery will take a long time and will depend on the battery capacity, but will not create the effect of desulfation of the plates. So, step-by-step assembly of the device:

  1. Disassemble the power supply and unsolder all wires except the green one. Remember or mark the input locations of black (GND) and yellow +12 V.
  2. Solder the green wire to the place where the black one was located (this is necessary to start the unit without a PC motherboard). In place of the black wire, solder a lead, which will be negative for charging the battery. In place of the yellow wire, solder the positive lead for charging the battery.
  3. You need to find a TL 494 chip or its equivalent. A list of analogs is easy to find on the Internet; one of them will definitely be found in the circuit. With all the variety of blocks, they are not produced without these microcircuits.
  4. From the first leg of this microcircuit - it is the lower left one, find the resistor that goes to the +12 volt output (yellow wire). This can be done visually along the tracks in the diagram, or using a tester by connecting the power and measuring the voltage at the input of the resistors going to the first leg. Do not forget that the primary winding of the transformer carries a voltage of 220 volts, so you need to take safety precautions when starting the unit without a housing.
  5. Unsolder the found resistor and measure its resistance with a tester. Select a variable resistor that is close in value. Set it to the desired resistance value and solder it in place of the removed circuit element with flexible wires.
  6. By starting the power supply by adjusting the variable resistor, get a voltage of 14 V, ideally 14.3 V. The main thing is not to overdo it, remembering that 15 V is usually the limit for working out the protection and, as a result, shutting down.
  7. Unsolder the variable resistor without changing its setting, and measure the resulting resistance. Select the required or closest resistance value from several resistors and solder it into the circuit.
  8. Check the unit, the output should have the required voltage. If desired, you can connect a voltmeter to the outputs on the plus and minus circuit, placing it on the case for clarity. Subsequent assembly occurs in reverse order. The device is ready for use.

The unit will perfectly replace an inexpensive factory charger and is quite reliable. But you MUST remember that the device has overload protection, but this will not save you from polarity errors. Simply put, if you confuse the plus and minus when connecting to the battery, The charger will instantly fail.

Charger circuit from an old transformer

If you don’t have an old computer power supply at hand, and your radio engineering experience allows you to install simple circuits yourself, then you can use the following rather interesting battery charging circuit with control and regulation of the supplied voltage.

To assemble the device, you can use transformers from old uninterruptible power supplies or Soviet-made TVs. Any powerful step-down transformer with a total voltage set on the secondary windings of approximately 25 volts will do.

The diode rectifier is assembled on two KD 213A diodes (VD 1, VD 2), which must be installed on the radiator and can be replaced with any imported analogues. There are many analogues, and they can be easily selected from reference books on the Internet. Surely the necessary diodes can be found at home in old unnecessary equipment.

The same method can be used to replace the control transistor KT 827A (VT 1) and zener diode D 814 A (VD 3). The transistor is installed on the radiator.

The supply voltage is adjusted by variable resistor R2. The scheme is simple and obviously working. It can be assembled by a person with minimal knowledge of electronics.

Pulse charging for batteries

The circuit is difficult to assemble, but this is the only drawback. It is unlikely that you will be able to find a simple circuit for a pulse charging unit. This is compensated by the advantages: such blocks hardly heat up, at the same time they have serious power and high efficiency, and are compact in size. The proposed circuit, mounted on a board, fits into a container measuring 160*50*40 mm. To assemble the device, you need to understand the operating principle of the PWM (Pulse Width Modulation) generator. In the proposed version, it is implemented using the common and inexpensive IR 2153 controller.

With capacitors used, the power of the device is 190 watts. This is enough to charge any light car battery with a capacity of up to 100 Ah. By installing 470 µF capacitors, the power will double. It will be possible to charge batteries with a capacity of up to two hundred amperes/hours.

When using devices without automatic battery charge control, you can use the simplest network, daily relay made in China. This will eliminate the need to monitor the time the unit is disconnected from the network.

The cost of such a device is about 200 rubles. Knowing the approximate charging time of your battery, you can set right time shutdowns. This ensures that the electricity supply is cut off in a timely manner. You can get distracted by business and forget about the battery, which can lead to boiling, destruction of the plates and failure of the battery. A new battery will cost much more

Precautionary measures

When using self-assembled devices, the following safety precautions should be observed:

  1. All devices, including the battery, must be on a fire-resistant surface.
  2. When using the manufactured device for the first time, it is necessary to ensure full control all charging parameters. It is imperative to control the heating temperature of all charging elements and the battery; the electrolyte should not be allowed to boil. The voltage and current parameters are controlled by a tester. Primary monitoring will help determine the time it takes to fully charge the battery, which will be useful in the future.

Assembling a battery charger is easy even for a beginner. The main thing is to do everything carefully and follow safety measures, because you will have to deal with an open voltage of 220 volts.

Analysis of more than 11 circuits for making a charger with your own hands at home, new circuits for 2017 and 2018, how to assemble a circuit diagram in an hour.

TEST:

To understand whether you have the necessary information about batteries and chargers for them, you should take a short test:
  1. What are the main reasons why a car battery discharges on the road?

A) The motorist got out of the vehicle and forgot to turn off the headlights.

B) The battery has become too hot due to exposure to sunlight.

  1. Can the battery fail if the car is not used for a long time (sitting in a garage without starting)?

A) If left idle for a long time, the battery will fail.

B) No, the battery will not deteriorate, it will only need to be charged and it will function again.

  1. What current source is used to recharge the battery?

A) There is only one option - a network with a voltage of 220 volts.

B) 180 Volt network.

  1. Be sure to shoot battery when connecting a homemade device?

A) It is advisable to remove the battery from its installed location, otherwise there is a risk of damaging the electronics due to high voltage.

B) It is not necessary to remove the battery from its installed location.

  1. If you confuse “minus” and “plus” when connecting a charger, will the battery fail?

A) Yes, if connected incorrectly, the equipment will burn out.

B) The charger simply will not turn on; you will need to move the necessary contacts to the correct places.

Answers:

  1. A) Headlights not turned off when stopping and sub-zero temperatures are the most common causes of battery discharge on the road.
  2. A) The battery fails if it is not recharged for a long time when the car is idle.
  3. A) For recharging, a mains voltage of 220 V is used.
  4. A) It is not advisable to charge the battery with a homemade device if it is not removed from the car.
  5. A) The terminals should not be mixed up, otherwise the homemade device will burn out.

Battery on vehicles require periodic charging. The reasons for the discharge can be different - from headlights that the owner forgot to turn off, to negative temperatures outside in winter. For recharge battery You will need a good charger. This device is available in large varieties in auto parts stores. But if there is no opportunity or desire to purchase, then memory You can do it yourself at home. There are also a large number of schemes - it is advisable to study them all in order to choose the most suitable option.

Definition: The car charger is designed to transfer electric current with a given voltage directly to Battery

Answers to 5 Frequently Asked Questions

  1. Will I need to take any additional measures before charging the battery in my car?– Yes, you will need to clean the terminals, since acid deposits appear on them during operation. Contacts It needs to be cleaned very well so that current flows to the battery without difficulty. Sometimes motorists use grease to treat terminals; this should also be removed.
  2. How to wipe charger terminals?— You can buy a specialized product in a store or prepare it yourself. Water and soda are used as a self-made solution. The components are mixed and stirred. This is an excellent option for treating all surfaces. When the acid comes into contact with soda, a reaction will occur and the motorist will definitely notice it. This area will need to be thoroughly wiped to get rid of all acids. If the terminals were previously treated with grease, it can be removed with any clean rag.
  3. If there are covers on the battery, do they need to be opened before charging?— If there are covers on the body, they must be removed.
  4. Why is it necessary to unscrew the battery caps?— This is necessary so that the gases formed during the charging process can freely exit the case.
  5. Is there a need to pay attention to the electrolyte level in the battery?- This is done without fail. If the level is lower than required, then you need to add distilled water inside the battery. Determining the level is not difficult - the plates must be completely covered with liquid.

It’s also important to know: 3 nuances about operation

The homemade product differs somewhat in its method of operation from the factory version. This is explained by the fact that the purchased unit has built-in functions, helping in work. They are difficult to install on a device assembled at home, and therefore you will have to adhere to several rules when operation.

  1. A self-assembled charger will not turn off when the battery is fully charged. That is why it is necessary to periodically monitor the equipment and connect it to multimeter– for charge control.
  2. You need to be very careful not to confuse “plus” and “minus”, otherwise Charger will burn.
  3. The equipment must be turned off when connecting to charger.

By following these simple rules, you will be able to recharge correctly battery and avoid unpleasant consequences.

Top 3 charger manufacturers

If you don’t have the desire or ability to assemble it yourself memory, then pay attention to the following manufacturers:

  1. Stack.
  2. Sonar.
  3. Hyundai.

How to avoid 2 mistakes when charging a battery

It is necessary to follow the basic rules in order to properly nourish battery by car.

  1. Direct to mains battery connection is prohibited. Chargers are intended for this purpose.
  2. Even device made with high quality and good materials, you will still need to periodically monitor the process charging, so that troubles don't happen.

Following simple rules will ensure reliable operation of self-made equipment. It is much easier to monitor the unit than to spend money on components for repairs.

The simplest battery charger

Scheme of a 100% working 12 volt charger

Look at the picture for the diagram memory at 12 V. The equipment is intended for charging car batteries with a voltage of 14.5 Volts. The maximum current received during charging is 6 A. But the device is also suitable for other batteries - lithium-ion, since the voltage and output current can be adjusted. All the main components for assembling the device can be found on the Aliexpress website.

Required components:

  1. dc-dc buck converter.
  2. Ammeter.
  3. Diode bridge KVRS 5010.
  4. Hubs 2200 uF at 50 volts.
  5. transformer TS 180-2.
  6. Circuit breakers.
  7. Plug for connecting to the network.
  8. "Crocodiles" for connecting terminals.
  9. Radiator for diode bridge.

Transformer any one can be used at your own discretion. The main thing is that its power is not lower than 150 W (with a charging current of 6 A). It is necessary to install thick and short wires on the equipment. The diode bridge is fixed on a large radiator.

Look at the picture of the charger circuit Dawn 2. It is compiled according to the original Memory If you master this scheme, you will be able to independently create a high-quality copy that is no different from the original sample. Structurally, the device is a separate unit, closed with a housing to protect the electronics from moisture and exposure to bad weather conditions. It is necessary to connect a transformer and thyristors on the radiators to the base of the case. You will need a board that will stabilize the current charge and control the thyristors and terminals.

1 smart memory circuit


Look at the picture for a circuit diagram of a smart charger. The device is necessary for connection to lead-acid batteries with a capacity of 45 amperes per hour or more. This type of device is connected not only to batteries that are used daily, but also to those on duty or in reserve. This is a fairly budget version of the equipment. It does not provide indicator, and you can buy the cheapest microcontroller.

If you have the necessary experience, then you can assemble the transformer yourself. There is also no need to install audible warning signals - if battery connects incorrectly, the discharge lamp will light up to indicate an error. The equipment must be supplied pulse block power supply 12 volts - 10 amperes.

1 industrial memory circuit


Look at the industrial diagram charger from Bars 8A equipment. Transformers are used with one 16-volt power winding, several vd-7 and vd-8 diodes are added. This is necessary in order to provide a bridge rectifier circuit from one winding.

1 inverter device diagram


Look at the picture for a diagram of an inverter charger. This device discharges the battery to 10.5 Volts before charging. The current is used with a value of C/20: “C” indicates the capacity of the installed battery. After that process the voltage rises to 14.5 Volts using a discharge-charge cycle. The ratio of charge and discharge is ten to one.

1 electrical circuit charger electronics


1 powerful memory circuit


Look at the picture at the diagram of a powerful charger for a car battery. The device is used for acidic battery, having high capacity. The device easily charges a car battery with a capacity of 120 A. The output voltage of the device is self-regulated. It ranges from 0 to 24 volts. Scheme It is notable for the fact that it has few components installed, but it does not require additional settings during operation.


Many could already see the Soviet Charger. It looks like a small metal box and may seem quite unreliable. But this is not true at all. The main difference between the Soviet model and modern models is reliability. The equipment has structural capacity. In the event that to the old device connect the electronic controller, then charger it will be possible to revive. But if you no longer have one at hand, but there is a desire to assemble it, you need to study the diagram.

To the features their equipment includes a powerful transformer and rectifier, with the help of which it is possible to quickly charge even a very discharged battery. Many modern devices will not be able to reproduce this effect.

Electron 3M


In an hour: 2 DIY charging concepts

Simple circuits

1 the simplest scheme for an automatic charger for a car battery